
1/24

Machine Learning Guidance for an Automatic
Theorem Prover

Martin Suda∗

Czech Technical University in Prague, Czech Republic

ML4SP Workshop, Glasgow, August 2025

∗Supported by the Czech Science Foundation standard project 24-12759S.

1/24

Machine Learning for Solvers

Pick a Heuristic
many don’t-care non-deterministic choice points
normally governed by hand-crafted heuristics

Replace it with a neural network
give it access to the relevant context for making decisions
feature engineering / auto-learning of task-relevant node
embeddings (GNNs, RvNNs,...)
faithful representations / easy-to-compute abstractions

Train the network from previous runs
What lead to a success? / What was a reason for failure?
The proxy (ML) task vs the true target

1/24

Machine Learning for Solvers

Pick a Heuristic
many don’t-care non-deterministic choice points
normally governed by hand-crafted heuristics

Replace it with a neural network
give it access to the relevant context for making decisions
feature engineering / auto-learning of task-relevant node
embeddings (GNNs, RvNNs,...)
faithful representations / easy-to-compute abstractions

Train the network from previous runs
What lead to a success? / What was a reason for failure?
The proxy (ML) task vs the true target

1/24

Machine Learning for Solvers

Pick a Heuristic
many don’t-care non-deterministic choice points
normally governed by hand-crafted heuristics

Replace it with a neural network

give it access to the relevant context for making decisions
feature engineering / auto-learning of task-relevant node
embeddings (GNNs, RvNNs,...)
faithful representations / easy-to-compute abstractions

Train the network from previous runs
What lead to a success? / What was a reason for failure?
The proxy (ML) task vs the true target

1/24

Machine Learning for Solvers

Pick a Heuristic
many don’t-care non-deterministic choice points
normally governed by hand-crafted heuristics

Replace it with a neural network
give it access to the relevant context for making decisions

feature engineering / auto-learning of task-relevant node
embeddings (GNNs, RvNNs,...)
faithful representations / easy-to-compute abstractions

Train the network from previous runs
What lead to a success? / What was a reason for failure?
The proxy (ML) task vs the true target

1/24

Machine Learning for Solvers

Pick a Heuristic
many don’t-care non-deterministic choice points
normally governed by hand-crafted heuristics

Replace it with a neural network
give it access to the relevant context for making decisions
feature engineering / auto-learning of task-relevant node
embeddings (GNNs, RvNNs,...)

faithful representations / easy-to-compute abstractions

Train the network from previous runs
What lead to a success? / What was a reason for failure?
The proxy (ML) task vs the true target

1/24

Machine Learning for Solvers

Pick a Heuristic
many don’t-care non-deterministic choice points
normally governed by hand-crafted heuristics

Replace it with a neural network
give it access to the relevant context for making decisions
feature engineering / auto-learning of task-relevant node
embeddings (GNNs, RvNNs,...)
faithful representations / easy-to-compute abstractions

Train the network from previous runs
What lead to a success? / What was a reason for failure?
The proxy (ML) task vs the true target

1/24

Machine Learning for Solvers

Pick a Heuristic
many don’t-care non-deterministic choice points
normally governed by hand-crafted heuristics

Replace it with a neural network
give it access to the relevant context for making decisions
feature engineering / auto-learning of task-relevant node
embeddings (GNNs, RvNNs,...)
faithful representations / easy-to-compute abstractions

Train the network from previous runs

What lead to a success? / What was a reason for failure?
The proxy (ML) task vs the true target

1/24

Machine Learning for Solvers

Pick a Heuristic
many don’t-care non-deterministic choice points
normally governed by hand-crafted heuristics

Replace it with a neural network
give it access to the relevant context for making decisions
feature engineering / auto-learning of task-relevant node
embeddings (GNNs, RvNNs,...)
faithful representations / easy-to-compute abstractions

Train the network from previous runs
What lead to a success? / What was a reason for failure?

The proxy (ML) task vs the true target

1/24

Machine Learning for Solvers

Pick a Heuristic
many don’t-care non-deterministic choice points
normally governed by hand-crafted heuristics

Replace it with a neural network
give it access to the relevant context for making decisions
feature engineering / auto-learning of task-relevant node
embeddings (GNNs, RvNNs,...)
faithful representations / easy-to-compute abstractions

Train the network from previous runs
What lead to a success? / What was a reason for failure?
The proxy (ML) task vs the true target

2/24

Machine-Learning-Boosted Automated Theorem Proving

ATP technology: saturation-based
state of the art (cf. CASC)
E, iProver, SPASS, Vampire, . . .

Heuristic to boost: clause selection
arguably the most important choice point
“selecting just the proof clauses” intuition

Three main contributions:
a RL-inspired learning operator
a new neural architecture (GNN + RvNNs + MLP)
20% performance boost of Vampire under neural guidance

2/24

Machine-Learning-Boosted Automated Theorem Proving

ATP technology: saturation-based
state of the art (cf. CASC)
E, iProver, SPASS, Vampire, . . .

Heuristic to boost: clause selection
arguably the most important choice point
“selecting just the proof clauses” intuition

Three main contributions:
a RL-inspired learning operator
a new neural architecture (GNN + RvNNs + MLP)
20% performance boost of Vampire under neural guidance

2/24

Machine-Learning-Boosted Automated Theorem Proving

ATP technology: saturation-based
state of the art (cf. CASC)
E, iProver, SPASS, Vampire, . . .

Heuristic to boost: clause selection
arguably the most important choice point
“selecting just the proof clauses” intuition

Three main contributions:
a RL-inspired learning operator
a new neural architecture (GNN + RvNNs + MLP)
20% performance boost of Vampire under neural guidance

3/24

Outline

1 Saturation and Clause Selection

2 RL-Inspired Guidance

3 Neural Clause Evaluation

4 Experiments

4/24

Outline

1 Saturation and Clause Selection

2 RL-Inspired Guidance

3 Neural Clause Evaluation

4 Experiments

5/24

Saturation-based Theorem Proving

At a typical successful end: |Passive| ≫ |Active| ≫ |Proof |

5/24

Saturation-based Theorem Proving

At a typical successful end: |Passive| ≫ |Active| ≫ |Proof |

6/24

The Proof Is Often Just A Tiny Part

⊥

I:

How close can we actually hope get to the perfect clause selection?

6/24

The Proof Is Often Just A Tiny Part

⊥

I:

How close can we actually hope get to the perfect clause selection?

6/24

The Proof Is Often Just A Tiny Part

⊥

I:

How close can we actually hope get to the perfect clause selection?

7/24

How is clause selection traditionally done?

Take simple clause evaluation criteria:
age: prefer clauses that were generated long time ago
weight: prefer clauses with fewer symbols

Combine them into a single scheme:
have a priority queue ordering Passive for each criterion
alternate between selecting from the queues using a fixed ratio

Example (Organizing Passive via two priority queues)

S :

7/24

How is clause selection traditionally done?

Take simple clause evaluation criteria:
age: prefer clauses that were generated long time ago
weight: prefer clauses with fewer symbols

Combine them into a single scheme:
have a priority queue ordering Passive for each criterion
alternate between selecting from the queues using a fixed ratio

Example (Organizing Passive via two priority queues)

S :

7/24

How is clause selection traditionally done?

Take simple clause evaluation criteria:
age: prefer clauses that were generated long time ago
weight: prefer clauses with fewer symbols

Combine them into a single scheme:
have a priority queue ordering Passive for each criterion
alternate between selecting from the queues using a fixed ratio

Example (Organizing Passive via two priority queues)

S :

8/24

Sneak Peek: What Do NNs Think of Age and Weigth?

9/24

Outline

1 Saturation and Clause Selection

2 RL-Inspired Guidance

3 Neural Clause Evaluation

4 Experiments

10/24

Why Reinforcement Learning?

Inspired by the great successes:
ATARI games (DQN)
V. Mnih et al. Playing ATARI with deep reinforcement learning. CoRR, 2013.

Board games (AlphaZero)
D. Silver et al. A general reinforcement learning algorithm that masters chess, shogi, and Go
through self-play. Science, 2018.

. . .
“I wan’t to try it on my pet problem too!”

What’s really unique about RL?
It programs itself (sometimes even optimally, in the limit)
It could discover fundamentally novel tricks and hacks!

10/24

Why Reinforcement Learning?

Inspired by the great successes:
ATARI games (DQN)
V. Mnih et al. Playing ATARI with deep reinforcement learning. CoRR, 2013.

Board games (AlphaZero)
D. Silver et al. A general reinforcement learning algorithm that masters chess, shogi, and Go
through self-play. Science, 2018.

. . .
“I wan’t to try it on my pet problem too!”

What’s really unique about RL?
It programs itself (sometimes even optimally, in the limit)
It could discover fundamentally novel tricks and hacks!

10/24

Why Reinforcement Learning?

Inspired by the great successes:
ATARI games (DQN)
V. Mnih et al. Playing ATARI with deep reinforcement learning. CoRR, 2013.

Board games (AlphaZero)
D. Silver et al. A general reinforcement learning algorithm that masters chess, shogi, and Go
through self-play. Science, 2018.

. . .
“I wan’t to try it on my pet problem too!”

What’s really unique about RL?
It programs itself (sometimes even optimally, in the limit)
It could discover fundamentally novel tricks and hacks!

11/24

Key Reinforcement Learning Concepts

∗Illustration from anyscale.com.

anyscale.com

12/24

Saturation as an Reinforcement-Learning Environment

Agent
the clause selection heuristic

Action
the next clause to select from the current passive set

State / Observation
static - the conjecture we are trying to prove
evolving - the internal state of the prover at particular moment

Reward
Score 1 point for solving a problem (within the time limit) ???

➥ TRAIL [Crouse et al.’21], [McKeown’23], [Shminke’23], . . .

12/24

Saturation as an Reinforcement-Learning Environment

Agent
the clause selection heuristic

Action
the next clause to select from the current passive set

State / Observation
static - the conjecture we are trying to prove
evolving - the internal state of the prover at particular moment

Reward
Score 1 point for solving a problem (within the time limit) ???

➥ TRAIL [Crouse et al.’21], [McKeown’23], [Shminke’23], . . .

12/24

Saturation as an Reinforcement-Learning Environment

Agent
the clause selection heuristic

Action
the next clause to select from the current passive set

State / Observation
static - the conjecture we are trying to prove
evolving - the internal state of the prover at particular moment

Reward
Score 1 point for solving a problem (within the time limit) ???

➥ TRAIL [Crouse et al.’21], [McKeown’23], [Shminke’23], . . .

12/24

Saturation as an Reinforcement-Learning Environment

Agent
the clause selection heuristic

Action
the next clause to select from the current passive set

State / Observation
static - the conjecture we are trying to prove
evolving - the internal state of the prover at particular moment

Reward
Score 1 point for solving a problem (within the time limit) ???

➥ TRAIL [Crouse et al.’21], [McKeown’23], [Shminke’23], . . .

12/24

Saturation as an Reinforcement-Learning Environment

Agent
the clause selection heuristic

Action
the next clause to select from the current passive set

State / Observation
static - the conjecture we are trying to prove
evolving - the internal state of the prover at particular moment

Reward
Score 1 point for solving a problem (within the time limit) ???

➥ TRAIL [Crouse et al.’21], [McKeown’23], [Shminke’23], . . .

13/24

Design Decisions

Guiding Principle
The new design accommodates the old heuristic as an attainable
point in the space of possible solutions.

State / Observation
the evolving state of an ATP is a large amorphous blob
there is no state in the SoTA clause-selection heuristics
let’s discard state too ⇒ assumption of state-less environment

Reward
refusing the play the honest, super-sparse reward game
like in ENIGMA: a proof clause is a good clause

13/24

Design Decisions

Guiding Principle
The new design accommodates the old heuristic as an attainable
point in the space of possible solutions.

State / Observation
the evolving state of an ATP is a large amorphous blob
there is no state in the SoTA clause-selection heuristics
let’s discard state too ⇒ assumption of state-less environment

Reward
refusing the play the honest, super-sparse reward game
like in ENIGMA: a proof clause is a good clause

13/24

Design Decisions

Guiding Principle
The new design accommodates the old heuristic as an attainable
point in the space of possible solutions.

State / Observation
the evolving state of an ATP is a large amorphous blob
there is no state in the SoTA clause-selection heuristics
let’s discard state too ⇒ assumption of state-less environment

Reward
refusing the play the honest, super-sparse reward game
like in ENIGMA: a proof clause is a good clause

14/24

Towards the RL-Inspired Learning Operator

A trace of a successful proof attempt on problem P is a tuple

T = (P, C, C+, {Pi}i∈IT).

Learning operator (for clause selection)
input: neural network Nθ (learnable params θ), set of traces T
output: updated parameters θ′,
such that Nθ′ is better at solving problems like those from T

Logits and Policy
Assuming Nθ produces a score Nθ(C) = lC for each clause C , then

πC ,θ = softmaxC
(
{lD}D∈P

)
=

e lC∑
D∈P e lD

is the (stochastic) clause selection policy defined by Nθ

14/24

Towards the RL-Inspired Learning Operator

A trace of a successful proof attempt on problem P is a tuple

T = (P, C, C+, {Pi}i∈IT).

Learning operator (for clause selection)
input: neural network Nθ (learnable params θ), set of traces T
output: updated parameters θ′,
such that Nθ′ is better at solving problems like those from T

Logits and Policy
Assuming Nθ produces a score Nθ(C) = lC for each clause C , then

πC ,θ = softmaxC
(
{lD}D∈P

)
=

e lC∑
D∈P e lD

is the (stochastic) clause selection policy defined by Nθ

14/24

Towards the RL-Inspired Learning Operator

A trace of a successful proof attempt on problem P is a tuple

T = (P, C, C+, {Pi}i∈IT).

Learning operator (for clause selection)
input: neural network Nθ (learnable params θ), set of traces T
output: updated parameters θ′,
such that Nθ′ is better at solving problems like those from T

Logits and Policy
Assuming Nθ produces a score Nθ(C) = lC for each clause C , then

πC ,θ = softmaxC
(
{lD}D∈P

)
=

e lC∑
D∈P e lD

is the (stochastic) clause selection policy defined by Nθ

14/24

Towards the RL-Inspired Learning Operator

A trace of a successful proof attempt on problem P is a tuple

T = (P, C, C+, {Pi}i∈IT).

Learning operator (for clause selection)
input: neural network Nθ (learnable params θ), set of traces T
output: updated parameters θ′,
such that Nθ′ is better at solving problems like those from T

Logits and Policy
Assuming Nθ produces a score Nθ(C) = lC for each clause C , then

πC ,θ = softmaxC
(
{lD}D∈P

)
=

e lC∑
D∈P e lD

is the (stochastic) clause selection policy defined by Nθ

15/24

The RL-Inspired Operator

Policy Gradient Theorem [Williams’92]

To improve a policy in terms of the expected return we update

θ ← θ + αrC∇θ log πC ,θ,

where rC is the return / reward at the corresponding step.

Our Operator:
Each moment in time i is an independent opportunity to improve,
with

δTi = meanC∈P+
i
∇θ log πC ,θ,

for a trace T = (P, C, C+, {Pi}i∈IT) and P+
i = Pi ∩ C+. Then

δT = meani∈IT δ
T
i and δ = meanT∈T δ

T .

15/24

The RL-Inspired Operator

Policy Gradient Theorem [Williams’92]

To improve a policy in terms of the expected return we update

θ ← θ + αrC∇θ log πC ,θ,

where rC is the return / reward at the corresponding step.

Our Operator:
Each moment in time i is an independent opportunity to improve,
with

δTi = meanC∈P+
i
∇θ log πC ,θ,

for a trace T = (P, C, C+, {Pi}i∈IT) and P+
i = Pi ∩ C+. Then

δT = meani∈IT δ
T
i and δ = meanT∈T δ

T .

16/24

Outline

1 Saturation and Clause Selection

2 RL-Inspired Guidance

3 Neural Clause Evaluation

4 Experiments

17/24

Neural Clause Evaluation

Aim for a balance between expressivity and speed of inference!

One-off GNN Invocation:
Graph Neural Networks
name-invariant formula representations
relatively expensive; the more context the better
here: only apply to the input CNF (i.e., only one GNN call)

Generalizing Age and Weight with RvNNs:
Recursive Neural Networks
g-age: grow along the clause derivation tree
g-weight: grow along the clause syntax tree
share substructures (dag) and cache results

Simple Hand-Crafted Features on Top!

17/24

Neural Clause Evaluation

Aim for a balance between expressivity and speed of inference!

One-off GNN Invocation:
Graph Neural Networks
name-invariant formula representations
relatively expensive; the more context the better
here: only apply to the input CNF (i.e., only one GNN call)

Generalizing Age and Weight with RvNNs:
Recursive Neural Networks
g-age: grow along the clause derivation tree
g-weight: grow along the clause syntax tree
share substructures (dag) and cache results

Simple Hand-Crafted Features on Top!

17/24

Neural Clause Evaluation

Aim for a balance between expressivity and speed of inference!

One-off GNN Invocation:
Graph Neural Networks
name-invariant formula representations
relatively expensive; the more context the better
here: only apply to the input CNF (i.e., only one GNN call)

Generalizing Age and Weight with RvNNs:
Recursive Neural Networks
g-age: grow along the clause derivation tree
g-weight: grow along the clause syntax tree
share substructures (dag) and cache results

Simple Hand-Crafted Features on Top!

17/24

Neural Clause Evaluation

Aim for a balance between expressivity and speed of inference!

One-off GNN Invocation:
Graph Neural Networks
name-invariant formula representations
relatively expensive; the more context the better
here: only apply to the input CNF (i.e., only one GNN call)

Generalizing Age and Weight with RvNNs:
Recursive Neural Networks
g-age: grow along the clause derivation tree
g-weight: grow along the clause syntax tree
share substructures (dag) and cache results

Simple Hand-Crafted Features on Top!

18/24

Architecture Diagram

⊕

subterms
clauses

variables
symbols

sorts

k message-passing rounds

...

one-off GNN

input C
N

F

g-weight RvNN

g-age RvNN

...

...

MLP lC

wC
aC

sC

19/24

Note on Efficient RvNNs

Strive to compute as much as possible in one bulk!

1def gage_insert(cl_num:int ,
2inf_rule:int ,
3parents:list[int]):
4level = max(base_level ,
51 + max(height[p] for p in parents))
6height[cl_num] = level
7index = level - base_level
8if len(todo_layers) == index:
9todo_layers.append ([])
10todo_layers[index]. append ((cl_num , inf_rule , parents))

I still need to try out how much GPUs could help here . . .

19/24

Note on Efficient RvNNs

Strive to compute as much as possible in one bulk!

1def gage_insert(cl_num:int ,
2inf_rule:int ,
3parents:list[int]):
4level = max(base_level ,
51 + max(height[p] for p in parents))
6height[cl_num] = level
7index = level - base_level
8if len(todo_layers) == index:
9todo_layers.append ([])
10todo_layers[index]. append ((cl_num , inf_rule , parents))

I still need to try out how much GPUs could help here . . .

19/24

Note on Efficient RvNNs

Strive to compute as much as possible in one bulk!

1def gage_insert(cl_num:int ,
2inf_rule:int ,
3parents:list[int]):
4level = max(base_level ,
51 + max(height[p] for p in parents))
6height[cl_num] = level
7index = level - base_level
8if len(todo_layers) == index:
9todo_layers.append ([])
10todo_layers[index]. append ((cl_num , inf_rule , parents))

I still need to try out how much GPUs could help here . . .

20/24

Outline

1 Saturation and Clause Selection

2 RL-Inspired Guidance

3 Neural Clause Evaluation

4 Experiments

21/24

Implementation

Single Clause Queue:
ordered by the computed logits Nθ(C) = lC

Could we also sample?

Gumbel-max trick: add some Gumbel noise

g = − log(− log(u)) for u ∼ Uniform(0, 1)

Delayed Insertion Buffer:
insertions into passive are lazy
only evaluate things in buffer when selection is called

Iterative Improvement Loop:
run (guided/plain) prover, collect traces, train from traces
repeat
little trick; despite the RL heritage:
inner loop trains until validation loss does not improve

21/24

Implementation

Single Clause Queue:
ordered by the computed logits Nθ(C) = lC

Could we also sample?
Gumbel-max trick:

add some Gumbel noise

g = − log(− log(u)) for u ∼ Uniform(0, 1)

Delayed Insertion Buffer:
insertions into passive are lazy
only evaluate things in buffer when selection is called

Iterative Improvement Loop:
run (guided/plain) prover, collect traces, train from traces
repeat
little trick; despite the RL heritage:
inner loop trains until validation loss does not improve

21/24

Implementation

Single Clause Queue:
ordered by the computed logits Nθ(C) = lC

Could we also sample?
Gumbel-max trick: add some Gumbel noise

g = − log(− log(u)) for u ∼ Uniform(0, 1)

Delayed Insertion Buffer:
insertions into passive are lazy
only evaluate things in buffer when selection is called

Iterative Improvement Loop:
run (guided/plain) prover, collect traces, train from traces
repeat
little trick; despite the RL heritage:
inner loop trains until validation loss does not improve

21/24

Implementation

Single Clause Queue:
ordered by the computed logits Nθ(C) = lC

Could we also sample?
Gumbel-max trick: add some Gumbel noise

g = − log(− log(u)) for u ∼ Uniform(0, 1)

Delayed Insertion Buffer:
insertions into passive are lazy
only evaluate things in buffer when selection is called

Iterative Improvement Loop:
run (guided/plain) prover, collect traces, train from traces
repeat
little trick; despite the RL heritage:
inner loop trains until validation loss does not improve

21/24

Implementation

Single Clause Queue:
ordered by the computed logits Nθ(C) = lC

Could we also sample?
Gumbel-max trick: add some Gumbel noise

g = − log(− log(u)) for u ∼ Uniform(0, 1)

Delayed Insertion Buffer:
insertions into passive are lazy
only evaluate things in buffer when selection is called

Iterative Improvement Loop:
run (guided/plain) prover, collect traces, train from traces
repeat

little trick; despite the RL heritage:
inner loop trains until validation loss does not improve

21/24

Implementation

Single Clause Queue:
ordered by the computed logits Nθ(C) = lC

Could we also sample?
Gumbel-max trick: add some Gumbel noise

g = − log(− log(u)) for u ∼ Uniform(0, 1)

Delayed Insertion Buffer:
insertions into passive are lazy
only evaluate things in buffer when selection is called

Iterative Improvement Loop:
run (guided/plain) prover, collect traces, train from traces
repeat
little trick; despite the RL heritage:
inner loop trains until validation loss does not improve

22/24

Experiments

Setup:
TPTP v9 CNF+FOF, 19 477 problems (train/test split)
Vampire’s default strategy (1:1 age-weight alternation)
limit of 30 000 Mi (∼10 s) per proof attempt

0 3 6 9 12 15 18 21 24
improvement loop iteration

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

pe
rc

en
ta

ge
 p

ro
bl

em
s p

ro
ve

n

boost
base
noImit

100 101 102 103 104 105

actvations default strategy

100

101

102

103

104

105

ac

tv
at

io
ns

 n
eu

ra
l g

ui
da

nc
e

22/24

Experiments

Setup:
TPTP v9 CNF+FOF, 19 477 problems (train/test split)
Vampire’s default strategy (1:1 age-weight alternation)
limit of 30 000 Mi (∼10 s) per proof attempt

0 3 6 9 12 15 18 21 24
improvement loop iteration

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

pe
rc

en
ta

ge
 p

ro
bl

em
s p

ro
ve

n

boost
base
noImit

100 101 102 103 104 105

actvations default strategy

100

101

102

103

104

105

ac

tv
at

io
ns

 n
eu

ra
l g

ui
da

nc
e

22/24

Experiments

Setup:
TPTP v9 CNF+FOF, 19 477 problems (train/test split)
Vampire’s default strategy (1:1 age-weight alternation)
limit of 30 000 Mi (∼10 s) per proof attempt

0 3 6 9 12 15 18 21 24
improvement loop iteration

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

pe
rc

en
ta

ge
 p

ro
bl

em
s p

ro
ve

n

boost
base
noImit

100 101 102 103 104 105

actvations default strategy

100

101

102

103

104

105

ac

tv
at

io
ns

 n
eu

ra
l g

ui
da

nc
e

23/24

Experiments II

Solving Hard Problems:
overfit to TPTP with 100 000 Mi-limited runs
ran for 12.4 days
solved 130 rating 1.0 (49 never solved, 8 status UNK)

Put Into Perspective:

103 104 105 106

time (Mi)

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

pe
rc

en
ta

ge
 te

st
 p

ro
bl

em
s p

ro
ve

n boost(all100k)
boost(30k)
nwc=5
default
otter
av=off

23/24

Experiments II

Solving Hard Problems:
overfit to TPTP with 100 000 Mi-limited runs
ran for 12.4 days
solved 130 rating 1.0 (49 never solved, 8 status UNK)

Put Into Perspective:

103 104 105 106

time (Mi)

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

pe
rc

en
ta

ge
 te

st
 p

ro
bl

em
s p

ro
ve

n boost(all100k)
boost(30k)
nwc=5
default
otter
av=off

24/24

Conclusion

Summary:
new efficient name-invariant neural architecture
new learning operator inspired by reinforcement learning
implementation in Vampire

20% performance boost of the default strategy
trained model can solve many very hard
(previously unsolved) TPTP problems

Outlook:
ENIGMA-style vs RL-inspired learning
other benchmarks than TPTP; e.g. Mizar40; transfer learning
neural guidance and theorem proving strategies

PhD & PostDoc Position Open!

24/24

Conclusion

Summary:
new efficient name-invariant neural architecture
new learning operator inspired by reinforcement learning
implementation in Vampire

20% performance boost of the default strategy
trained model can solve many very hard
(previously unsolved) TPTP problems

Outlook:
ENIGMA-style vs RL-inspired learning
other benchmarks than TPTP; e.g. Mizar40; transfer learning
neural guidance and theorem proving strategies

PhD & PostDoc Position Open!

24/24

Conclusion

Summary:
new efficient name-invariant neural architecture
new learning operator inspired by reinforcement learning
implementation in Vampire

20% performance boost of the default strategy
trained model can solve many very hard
(previously unsolved) TPTP problems

Outlook:
ENIGMA-style vs RL-inspired learning
other benchmarks than TPTP; e.g. Mizar40; transfer learning
neural guidance and theorem proving strategies

PhD & PostDoc Position Open!

25/24

ENIGMA-style

The core idea
Learn to recognize and prefer for selection clauses that look like
those that contributed to a proof in past successful runs.

➥ [Schulz00], ENIGMA [Jakubův&Urban17], [Loos et al.’17], . . .

The “pos/neg”s of E:
E prover can be asked to output, for every clause selected in a run,
whether it ended up in the final proof (pos) or not (neg)

Next comes the ML:
represent those clauses somehow (features, NNs, . . .)
train a binary classifier on the task
integrate back with the prover: “try to do more of the pos ”

25/24

ENIGMA-style

The core idea
Learn to recognize and prefer for selection clauses that look like
those that contributed to a proof in past successful runs.

➥ [Schulz00], ENIGMA [Jakubův&Urban17], [Loos et al.’17], . . .

The “pos/neg”s of E:
E prover can be asked to output, for every clause selected in a run,
whether it ended up in the final proof (pos) or not (neg)

Next comes the ML:
represent those clauses somehow (features, NNs, . . .)
train a binary classifier on the task
integrate back with the prover: “try to do more of the pos ”

25/24

ENIGMA-style

The core idea
Learn to recognize and prefer for selection clauses that look like
those that contributed to a proof in past successful runs.

➥ [Schulz00], ENIGMA [Jakubův&Urban17], [Loos et al.’17], . . .

The “pos/neg”s of E:
E prover can be asked to output, for every clause selected in a run,
whether it ended up in the final proof (pos) or not (neg)

Next comes the ML:
represent those clauses somehow (features, NNs, . . .)
train a binary classifier on the task
integrate back with the prover:

“try to do more of the pos ”

25/24

ENIGMA-style

The core idea
Learn to recognize and prefer for selection clauses that look like
those that contributed to a proof in past successful runs.

➥ [Schulz00], ENIGMA [Jakubův&Urban17], [Loos et al.’17], . . .

The “pos/neg”s of E:
E prover can be asked to output, for every clause selected in a run,
whether it ended up in the final proof (pos) or not (neg)

Next comes the ML:
represent those clauses somehow (features, NNs, . . .)
train a binary classifier on the task
integrate back with the prover: “try to do more of the pos ”

26/24

Possible Ways of Integrating the Learnt Advice

Priority:
sort by model’s Y/N and tiebreak by age

Logits:
even a binary classifier internally uses a real value

Combine with the original strategy

S ⊕M1,0 :

26/24

Possible Ways of Integrating the Learnt Advice

Priority:
sort by model’s Y/N and tiebreak by age

Logits:
even a binary classifier internally uses a real value

Combine with the original strategy

S ⊕M1,0 :

26/24

Possible Ways of Integrating the Learnt Advice

Priority:
sort by model’s Y/N and tiebreak by age

Logits:
even a binary classifier internally uses a real value

Combine with the original strategy

S ⊕M1,0 :

	Saturation and Clause Selection
	

	RL-Inspired Guidance
	

	Neural Clause Evaluation
	

	Experiments
	

	Appendix

