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Approximately 1989...

How can machine learning be applied to proving mathematical theorems?

...but my PhD research went elsewhere. (Well, I was in a DSP lab!) But the interest never went away.
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Early 2010s...

« I started to talk to Larry Paulson and Josef Urban about the problem.

« I worked with James Bridge and Larry Paulson on learning heuristic choice for the E Prover.

« This was fun!
In 2016 Josef Urban invited me to speak at the International Conference on Artificial Intelligence and Theorem
Proving (AITP).

« So I gave the talk, and then decided to write a review paper...

... and it turns out there’s lots of material...

... lots, and Lots, and LOTS!"!" of material...

... so I concentrated on SAT and OSAT. (Still ~ 230 relevant publications.)

Present day...
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“Machine Learning for Automated Theorem Proving: Learning to Solve SAT and QSAT”

DON'T MISS OUT!!!

Book: https://www.nowpublishers.com/article/Details/MAL— 081

CADE-28 half-day tutorial: https://www.cl.cam.ac.uk/ sbhil/research.html
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Why is this challenging?

The application of ML is delicate:

« It is often straightforward to identify and solve a relevant ML problem...

« ...BUT solvers can be very sensitive to small implementation changes.
As a result:
« ML research in this context has aspects unique to the SAT/OSAT application.

Also, in theorem-provers in general, a small change to the problem can make a huge change to a subsequent
attempt at proof .

Finally, SAT and QSAT are inherently hard.

And inherently interesting.

SAT-25: ML4SP Workshop 5 Sean B Holden, 10/8/25



A UNIVERSITY OF
@¥ CAMBRIDGE

Applying Machine Learning to Improve SAT Solvers: Some Highlights

The SAT problem

« Variables vy, v, ... can take values t (true) or f (false).
o A literal | is a variable v or its negation —v. [ = t iff =/ = f and vice versa.

 Formulas: t, f are formulas. Any variable is a formula. Also, if A and /5 are formulas then so are:

1. -A.
2. AN B.
3. AV B.
A — B isequivalent to = A\ B and A <> B isequivalentto (A — B) A (B — A).

o Assignment: Let a formula F' contain the variables v, ..., v,,. An assignment is a function @ : v; — {t, f}.

« Semantics: Given a formula /" and an assignment «, the truth or falsity of /' can be deduced. t and f take
their own values. A variable v takes value a(v).
1. - A = tiff A = f and vice versa.
2. ANBiff A=tand B = t.
3. AVBIMff A=torB = t.
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The DPLL algorithm

A clause is a formula of the form [, \/ [,V - - -V [,, where the [, are literals. An empty clause is f.

Any formula /' can be written as C'; A C5 A --- A C),,. This is known as conjunctive normal form (CNF). If F
has no clauses it is t.

The SAT Problem: given a formula /| is there an assignment « such that /' is t under a?

The Davis-Putnam-Logemann-Loveland (DPLL) algorithm takes an /' in CNF and decides whether there exists
such an «a. Essentially, simple depth-first search with chronological backtracking.

1. For any unit clause C' = {l}, if [ has the form v then a(v) = t. if [ has the form —v then a(v) = f.

2. For any literal / where we’ve established [ = t, remove —/ from all clauses in which it appears. If this
makes a clause empty then /' = f—it is unsatisfiable. Remove any clause containing /.

3. Constraint propagation: Step 2 may lead to new clauses of the form of Step 1. If so, we may have estab-
lished truth values for new literals. Continue the process for as long as possible.

4. Choose a variable v on which to split the problem. Try setting v = t and v = £, and applying the algo-
rithm for each case.
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CDCL Solvers: Making DPLL Work

Conflict-driven clause learning (CDCL) solvers use numerous techniques to improve on DPLL:

« Better constraint propagation—the two watched literals method.
« Activity-based variable ordering.

« Clause learning and backjumping.

» Clause forgetting.

« Restarting.

« And others...

Today I will mostly be talking about variable activity.
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CDCL Solvers: Clause Learning and Backjumping

Level d, where d > d' and d > d"

x5 =F » T2 Va3V 1y
at level d’ _— \
1 =T FH— 21V 22 Conflict
\ /
x5 =T » 9 V Xy V ay
at level d”

On finding a conflict, we can add one or more learned clauses to the original problem.

Why would we want to do this?

1. They can force later unit propagations.
2. In analyzing the conflict, we can establish backjumps.

3. Use of literals or clauses in analyzing the conflict leads to good heuristics.

The use of the term [earned here is distinct from machine learning.
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CDCL Solvers: Clause Learning and Backjumping

Level d, where d > d' and d > d"

x5 =F » T2 Va3V 1y
at level d’ _— \
1 =T FH— 21V 22 Conflict
\ /
x5 =T » 9 V Xy V ay
at level d”

Example:

« Resolve the clauses causing the conflict:
—xo V x3 V .

 Equivalently
(mx3 A T5) — o

« Backjump to the most recent of level d' or d” and assert —-.
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CDCL Solvers: Clause Learning and Backjumping

More generally:

7|1)12 =t 8|’U7 =t

Cut 1

Cut 2

10|’U17 =t

Reason Side Conflict Conflict Side

].|’l)20 =t 3|U21 =f

Cut the implication graph to infer different learned clauses.
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CDCL Solvers: Activity-Based Variable Ordering

Variable State Independent Decaying Sum (VSIDS) forms the basis for many current variable choice heuristics.
The essentially idea is as follows:

« Measure a variable’s importance by how often it has been used to learn a clause.

« Allow such activity measures to decay over time.
Example: EVSIDS updates variable activities at each conflict:

« For each variable v appearing in a learned clause

a(v) < a(v) + u.

« To decay activities over time

u < u X u’ where typically 1.01 < v’ < 1.2.

Various methods for choosing polarity, for example always f, or last polarity used.
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Machine Learning Highlight 1
Lightweight Methods for Per-Problem Learning of Variable Activities
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Multi-armed bandits

Learning by interaction with the environment.
[ have 1 1-armed bandits. Payouts have unknown distributions.

[ am allowed to make 12 plays, and I aim to maximize my winnings.

o If I knew the distributions of payouts for the bandits this would be straightforward.
« AsIdon’t, I have to explore the outcomes by trying different arms.

« If one gives me a good payout, perhaps I will exploit it.

What if the payout distributions change over time? 1 should place greater value on recent payouts. If a machine
gives payouts 7,79, . . ., r, then estimate the exponential recency weighted average (ERWA)

Iy = Z(l —a)lar;
i=1P
= (1 —a)ry_1 + ar,.
Algorithms such as the Discounted Upper Confidence Bound (UCB) algorithm provide ways of choosing arms
to play, depending on the characteristics of the problem, with differing performance guarantees.
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Multi-armed bandits for improving VSIDS I: the CHB heuristic

Several applications of ML have employed multi-armed bandits, in particular the ERWA algorithm, in attempts
to improve on VSIDS.

The Conflict History Based (CHB) heuristic attempts to reward variables that lead to many learned clauses.

« We have a v-armed bandit, that learns variable activities a(v).
« a(v) is updated whenever v is:

— Chosen to branch on.
— Propagated during unit propagation.
— Asserted due to clause learning.

« The usual update is applied:
a(v) < (1 — a)a(v) + ar,

but o is reduced over time.

« The reward 7, is carefully chosen to reward variables recently used to learn a clause
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Multi-armed bandits for improving VSIDS I: the CHB heuristic

For the CHB heuristic, let:

« C be the number of conflicts seen so far.
« C(v) be the number of conflicts when v was last used to learn a clause.

« = 1if using v lead to a conflict or (.9 otherwise.

Then i
I}

C—-C(v)+1
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Multi-armed bandits for improving VSIDS II: the LRB heuristic

The Learning Rate Branching (LRB) heuristic extends CHB.
It attempts to explicitly optimize the rate of generation of conflict clauses.

It differs from CHB in the definition of the reward r,.

« Let 7 be an interval starting when v is assigned and ending when v is unsassigned during backtracking.
« Say that v participates in generating C'if v € (' or v is resolved when generating (.
« Let p(v, Z) be the number of clauses that v participates in generating during 7.

« Let /.(7) be the number of clauses learned during 7.

Then the learning rate is

And we need some more definitions...
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Multi-armed bandits for improving VSIDS II: the LRB heuristic

More definitions:

« Say that v reasons in learning (' if it is not in (' but is in a reason clause for a variable in (.

« Let ¢(v,Z) be the number of clauses v reasons in generating during 7.

Then

and the reward is

Finally:

« A play is made with reward r, when v is unassigned.

o In order to exploit community structure, at each conflict the activities of unassigned variables are scaled
by 0.95.
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Improving VSIDS III: the GLR heuristic

The number of conflicts per decision made by the solver is known as the Global Learning Rate (GLR).
High GLR is known to correlate with short run-time.
Favor variables leading to a conflict if chosen: better than VSIDS but too expensive to compute.

Let

« 7 be the set of partial assignments.

« /P —{0,1} be a function taking value 1 if its argument leads to a conflict when propagated and ()
otherwise.

The central aim is to learn a function
f RV 0,1]

that approximates /. The features are simply
1 ifv; is assigned

T, = )
0 otherwise.
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Linear Regression: A Very Quick Reminder

We can solve simple learning problems—like learning f —using a perceptron:

Select the weights w; to minimize some measure of error F/(w) on some fraining examples.

1'0:1

Wo

T %‘
W2

a
2 ]

Wn
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Linear Regression: A Very Quick Reminder

If we use a simple function () = 2 then this is extremely straightforward.

Using for example

1 .
E(w) = 5 Z(’y/ —w'x;)%

=1

If we can find the gradient % of //(w) then we can minimize the error using gradient descent

OFE(w)
Wit =Wy — A\ ———
Oow w,
To learn f we want an output between 0 and 1:
 Regularized linear logistic regression uses a function such as
1
olx) = .
() 1+ exp(—x)

« We use a different //(w ).

« The details are similarly straightforward.
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Linear Regression: A Very Quick Reminder

Gradient descent: the simplest possible method for minimizing such functions:

20
48
400 Wt 10
Soollnlolty
00y
SO
5 200 L
~— \ ’W [ 0
0 W
-200 0\ -10
20 NN
\Q\::: }}}} 20
0 -20

Take small steps downhill until you reach the minimum.

-20

20

20

-20

20

But remember: in more general cases there might be many minima— some local and some global.

The step size matters.

20
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Improving VSIDS III: the GLR heuristic

This is achieved using regularized linear-logistic regression.

The training examples are generated in pairs at each conflict:

« A positive example containing the negation of the learned clause and the conflict-side literals.

« A negative example containing literals in the current partial assignment, except those at the current level
or in the positive example.

« There are some variations on this.

A single step of gradient descent is applied for each example.

« This is efficient.

« Allows learned f to adapt as clauses are learned.
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Machine Learning Highlight 2
Heavyweight Methods for Learning Variable Activities
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Real problems tend also to be nonlinear.

We can combine perceptrons to make a multilayer perceptron:

A
A
S

, )
)

N v %
° NINSN X
IN
' N

Here, each node is a perceptron and each edge has a weight attached.
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'vl{?/‘/‘\\\\\
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« The network computes a function /1, (x).
« The trick remains the same: minimize an error ~(w ).

« We do that by gradient descent
OE(w)
Wil =W — A —(—

Ow

Wi

« This can be achieved using backpropagation.

« Backpropagation is just a method for computing 0/ (w)/Ow.
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Other kinds of NN computation: recurrent networks

Sometimes, we might want to classify sequences x;,x, . . ..

An output can be produced after 7" steps, or at every step.

The vector h; denotes a state at time 7.

« Updates are computed as follows:

s; = by + s1hy_1 + sox;
h; = tanh(s;)
Yt = by + Yht

« Learned parameters b, s, so, b, and Y are the same at each step.
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Other kinds of NN computation: LSTMs

When learning recurrent networks, gradients can decay or grow exponentially.

Long Short Term Memories (LSTMs) aim to solve this problem, and have other advantages.

St—1 ——»> & > + > S
t—1 . ? l t

(Y tanh

\

&

£ it gt OtT

g g tanh o
w1 AL,

Q

This structure is repeated at each time step.
We now have two kinds of state: s; denoting long-term, and h; short-term state.

h, also acts as the output.
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The elephant(s) in the room: system design and hyperparameter choice

Machine Learning and Al have a [ittle secret...

...nothing is really automatic!

« Human input is still required, particularly in designing architectures.

 Any architecture will generally have numerous hyperparameters, such as the number of layers, number
of nodes per layer, learning rate and so on, and...

e ...good performance depends critically on setting these correctly.

There are notable efforts aimed at increasing the level of automation, but for now do not underestimate the
need for blood, sweat and tears!
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Learning features from examples: graph neural networks

Another recent development is the use of Graph Neural Networks (GNNs) to learn features from examples.

This is an alternative to designing a representation of a SAT problem by hand.

There are numerous variants of the GNN. Many employ some form of message passing:

x;, ht xj,h§
\ €i,j /
.

2

/ Xuaht ’ \

. X;, X;, X; ; are node and edge features.
« h}, h', h} ; represent hidden state at time /.

 Update over /" steps using

m!t!= Z My(hl, bl x; ;)

JEN (i

htJrl: U <h7‘ f+l>
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Learning features from examples: graph neural networks

t . ht
\XZ" hl X5 h]
€i,j /

g U

t
_— Xij by ™~

. The features are then

« The functions \/,, [/, and 17 are typically parameterized and learned.

Aside from removing much (not all!) of the need for manual intervention, these can insure invariance to
isomorphism, symmetry (for example clause re-ordering) and so on.
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Learning features from examples: graph neural networks

Example: [Selsam et al., 2019]. Represent a CNF formula /* with ¢ clauses and v variables as follows:

I

-1 C1

T2 Co
) C3
T3 C4
T3

 Run for /" steps. At each step
((jf+l7 C?/f’+l>
<L7‘+l7 L?]"+l>

C(C), ATL'(LY))
L(Ly, f(L', AC'(C"™))).

« Four functions are learned: /. and (' are MLPs and /" and (" are LSTMs with hidden states .|, and C).

« A;; is 1 if clause j contains literal ¢ and 0 otherwise. [ swaps a row for a literal with the row for its
negation.

« The resulting C’ and I.” have rows representing clauses and literals respectively.
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Revisiting the problem: NeuroSAT

NeuroSAT: represent a CNF formula /" with ¢ clauses and v variables as follows:

T

-1 C1
i) (6]
-T2 C3
T3 Cyq
X3

After some processing, we get C € 2?"*? and I € R“*?, These have rows representing clauses and literals
respectively, each embedded as a vector in R,

- Having obtained the literal embeddings, introduce an MLP that computes votes for each literal
v =V(L) € R*.
« The output of the system is obtained by thresholding the average of the votes.

« The entire architecture is trained to make the output match the single bit label for a training set of
SAT/UNSAT problems.
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GNNis for variable selection

Several systems have tried to extend NeuroSAT to learn to select variables.

Extension I: NeuroCore [Selsam and Bjerner, 2019] combines a simplified version of the NeuroSAT architecture
with the standard EVSIDS heuristic:

« An UNSAT Core (UC) is a set of clauses known to be unsatisfiable.

o Intuition: if you know a variable is in a UC then branch on it as it’s likely to lead to a conflict.

« Training set has only unsatisfiable problems.

« Analyze proofs to find variables in UCs.

« The system then learns the function core(v,) which predicts the likelihood that v; is in a UC.

« Runs CDCL as usual using EVSIDS. Activity is //(v;).

Periodically recompute activities:

T

E(v;) = |V |k + softmax (W) .
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Kinds of learning: reinforcement learning

What if we want to learn from rewards rather than labels?

Reinforcement learning works as follows.

1. We are in a state and can perform an action.
. When an action is performed we move to a new state and receive a reward. (Possibly zero or negative.)
. New states and rewards can be uncertain.

2
3
4. We have no knowledge in advance of how actions affect either the new state or the reward.
5. We want to learn a policy. This tells us what action to perform in any state.

6

. We want to learn a policy that in some sense maximizes reward obtained over time.

Typically, measure reward over time as
Ri=ri+yrip+7 g2+ -
- Z YV Tikje
7=0
Note that this can be regarded as a form of planning.
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GNNis for variable selection

Extension II: NeuroGlue [Han, 2020] takes a similar approach.
Literal Blocks Distance (LBD): number of variable levels in a clause.
Glue Variables: variables in conflict clauses with LBD at most 2.

This work considers a reinforcement learning approach.

« States are the F'(1) for trail 7. (The problem after assignments # and resulting propagations.)
« Actions are taken by choosing a variable to assign.

« State transition from a state /(1) corresponds to choosing polarity at random, adding the chosen assign-
ment to the trail forming ', and moving to /'(#').

« Rewards are () for a proof of satisfiability, 1 /(* for finding a conflict, where (' is the LBD of the conflict
clause, and —1/1” where |/ is the number of variables in /(') otherwise.

This is not the only approach attempting to introduce reinforcement learning...
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GNNis for variable selection

A similar system is GOSAT [Kurin et al., 2019]. In this system the states and transitions are similar, but:

« Actions choose both variable and polarity.

« Rewards are 0 if a solution is found and — otherwise.

A GNN-based approach is used to learn ()y(s, a), which is the expected reward if action a is taken in state s
and behavior thereafter is optimal.

Having learned this function, a policy for action choice is

p(s) = argmax Qy(s, a).

a

This turns out to be demanding to compute.

It is used only in the initial part of a CDCL run. After this, EVSIDS is used. (Another example of learning
variable initialization.)

Once again, some evidence of generalization is noted.

SAT-25: ML4SP Workshop 37 Sean B Holden, 10/8/25



UNIVERSITY OF
CAMBRIDGE

Applying Machine Learning to Improve SAT Solvers: Some Highlights

Take-Home Messages
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Take home messages

1. Methods: LOTS of things have been tried. Essentially every usable element of a CDCL solver has been a
basis for adding ML, and most of the tools in the ML toolbox have been applied...

2. ...BUT, something not noted until now is that a worrying large body of research makes little if any attempt
to optimize hyperparameters. One wonders how much has been lost!

3. Lightweight versus heavyweight methods:

« When you put machine learning inside the proof search it has to be fast.

« When more demanding methods are applied here, it’s not unusual to make better decisions but slow
down the process.

« Deep methods have analogous problems when deployed to, for example, mobile devices.

4. Be aware of what you’re learning to do: per-problem learning, versus learning to solve a class of problems.
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