ML-guided search for Mixed Integer Linear Programming #### Bistra Dilkina Associate Professor of Computer Science Co-Director, <u>USC Center on AI in Society (CAIS)</u> USC Site Lead, <u>AI Institute for Optimization (AI4OPT)</u> University of Southern California Aug 10, 2025 ### ML Combinatorial Optimization Exciting and growing research area Augment discrete optimization algorithms with learning components Infusing ML with Constrained Decision Making Learning methods that incorporate the combinatorial decisions they inform # Mixed Integer Linear Programs (MIP) #### Flexible mathematical program framework #### Scalable solving methods key to many real-world applications: - Branch-and-bound (SCIP, Gurobi, CPLEX) - Large Neighborhood Search - Etc. #### Learn from: Repeated solving of similar problems in many real-world settings Learn search policies tailored to the MIP distribution - get better performance than generic one-fits-all approaches by fitting to specific problem structure - no need for hand-designed custom approaches to new / challenging domains ML at the top-level: algorithm configuration / solver ensembling • SMAC, HydraMIP, AutoML, many more #### ML to improve tree search (BnB) for MIP: select variables to branch on (Khalil et al., 2016; Gasse et al., 2019; Gupta et al., 2020; Zarpellon et al., 2021, Ferber et al, 2022, Scavuzo et al 2024, Lin et al 2024, Cai et al 2024) - select nodes to expand (He et al., 2014; Labassi et al., 2022). - select primal heuristics (Khalil et al., 2017; Chmiela et al., 2021, others) - select cutting planes (Tang et al., 2020; Paulus et al., 2022; Huang et al., 2022c, Li et al, others) #### ML for Incomplete / Heuristic Search for MIP - Large Neighborhood Search / LNS (Song et al, Wu et al, Sonnerat et al, Liu et al, Huang et al 2023) - Solution Prediction and Predict-and-Search: (Ding et al, Nair et al, Khalil et al, Han et al, Huang et al 2024) #### **ML** for other Combinatorial Optimization Problems: SAT, TSP, VRP, SMT, Multi-agent Path Finding, other Graph Opt ### Outline - 1) Large Neighborhood Search (LNS-MIP) via contrastive loss - 2) Contrastive loss as a unifying paradigm for ML-guided MIP - Predict-and-Search with contrastive loss - Branching priorities in B&B (Backdoor prediction) with contrastive loss - 3) Multi-task Learning for ML-guided MIP solving - 4) Benchmarking: Distributional MIPLIB # Large Neighborhood Search (LNS) 1. Find an initial feasible solution 2. Select a part of the solution and unassign those variables 3. Reoptimize the removed part while keeping the remaining part fixed # Large Neighborhood Search (LNS) Require heuristic designs & Opportunities for ML guidance # Local Branching (LB) Heuristic [Fischetti & Lodi, 2003] **Destroy step**: Given an ILP and the current best solutions x^* , choose at most k variables to reoptimize while fixing the rest How do we find the **optimal** subset of k variables? **Local Branching**: solve a ILP with n variables and m+1 constraints $$\min_{x} c^{T}x$$ objective s.t. $Ax \leq b$ constraints $x_{i} \in \{0,1\} \ \forall i$ integrality $$\sum_{i:x_{i}^{*}=0} x_{i} + \sum_{i:x_{i}^{*}=1} (1-x_{i}) \leq k$$ Variable i is selected for LNS if changed value from x^{*} # LB Heuristic [Fischetti & Lodi, 2003] - Solve the Local Branching ILP - In hindsight, variables whose values change are the optimal subset - 😊 But very expensive to solve computationally #### Allow to change k = 3 Current best solution LB solution Difference | x_1 | x_2 | x_3 | x_4 | x_5 | |-------|-------|-------|-------|-------| | 1 | 1 | 1 | 0 | 0 | | 1 | 0 | 0 | 1 | 0 | | 0 | 1 | 1 | 1 | 0 | # IL-LNS: Imitation Learning Approach ### Google DeepMind Learning to imitate Local Branching [Sonnerat et al., 2021] - **Data collection**: run Local Branching ILP exhaustively to find one great example (label) of the variable destroy set for each 'state' (problem, current complete solution) - Training: Imitate Local Branching by classifying the variables (destroy or not) - Testing: Sample neighborhoods based on the predicted scores of each variable [Sonnerat et al., 2021] Learning a large neighborhood search algorithm for mixed integer programs. Arxiv. ### Contrastive Loss Instead of learning only from the best samples provided by local branching... We also learn to distinguish between good and bad samples with contrastive loss https://towardsdatascience.com/understanding-contrastive-learning-d5b19fd96607 #### Recent use of contrastive learning in other settings: Contrastive learning of visual representations (Hjelm et al., 2019; He et al., 2020; Chen et al., 2020) and graph representations (You et al., 2020; Tong et al., 2021) [Mulamba et al., 2021] Contrastive losses and solution caching for predict-and-optimize. IJCAI 2021. 14 # Our Approach: CL-LNS [Taoan Huang et al., ICML 2023] Searching Large Neighborhoods for Integer Linear Programs with Contrastive Learning #### Training and data collection pipeline ### Contrastive loss - Data collection details Optimal sample := variables changed in the optimal solution found by local branching ILP solved by SCIP within 1 hours best_improve:= improvement of the optimal sample over incumbent objective value #### **Positive samples of destroy sets:** - All solutions [0/1 vector] found by local branching ILP with *improvement* >= 0.5 * best_improve - up to max of 10 solutions Optimal sample := variables changed in the optimal solution found by local branching solved by SCIP within 1 hours best_improve:= improvement of the optimal sample over incumbent objective value #### Negative samples of destroy sets (k * Num Positive Samples, k=9): - Randomly replace 5% of variables in the optimal sample, Solve LNS MIP-subproblem with SCIP - Record it as a negative sample if *improvement <= 0.05 * best_improve* - If not enough negative samples found, increase to 10% to 20%, 30%...100% # CL-LNS: Training with a Contrastive Loss # Contrastive Loss function (InfoNCE): optimizes the negative log probability of the final embedding being similar to the positive samples α (destroy set): each positive/negative sample is a binary 0/1 vector of length n variables x is a set of features of the MIP to be solved and the current search state $\pi(x)$: NN output is a continuous [0,1] vector of length n variables: suggested destroy set $\min c^T x$ s.t. Ax = b, x_I integers #### Variable features (V): - Objective coefficient cThe number of constraints in which it appears - Features of the most recent best-found solutions #### **Edge** features (**E**): - Coefficient values A #### **Constraint** features (**C**): - Right-hand side b - The number of non-zero coefficients - Average coefficient values Variable **Constraints** # CL-LNS: Neural Network Architecture (permutation invariant model) The final output is a score in [0,1] indicating how promising it is to select each variable. # CL-LNS: Testing **Test Time:** Greedily choose the k variables with max scores from the ML model output $\pi(x)$ as destroy set for LNS move and reoptimize sub-MIP ### **Problem Domains** MVC: Weighted Minimum Vertex Cover "Small" instance: 1,000 variables and 65,100 constraints **CA**: Combinatorial Auctions "Small" instance: 4,000 variables and 2,675 constraints Combinatorial auctions Simultaneously for sale: v()) = \$500 v()) = \$700 bid 3 v()) = \$300 - Small instance: Training (1024) and testing (100) - Large instance: Testing only (100 instances) - 2x variables and ~2x constraints Results on two more domains (MIS, SC) in our paper ### Baselines - **BnB**: Branch and Bound using SCIP solver - RANDOM: LNS with random neighborhood selection - LB-RELAX: LNS with local branching relaxation heuristics [Huang et al., CPAIOR2023] - IL-LNS: SOTA imitation learning approach [Sonnerat et al., 2021] - **RL-LNS**: SOTA reinforcement learning approach [Wu et al., 2021] VS. CL-LNS (ours) # Results: Primal Integral #### 60 minutes - Small instances The **primal integral** at time q is the integral on [0, q] of the primal gap as a function of runtime. Captures the quality of and the speed at which solutions are found. # Results: Primal Integral (Generalization) #### 60 minutes - Large instances The **primal integral** at time q is the integral on [0, q] of the primal gap as a function of runtime. Captures the quality of and the speed at which solutions are found. ## Outline #### **Contrastive learning for LNS-MIP** - gives 26% 69% better rate of improvement (primal integral) than the second-best approach (primal integral at 60 minutes) among non-ML, Imitation Learning and RL SOTA approaches - strong generalization to larger instances: up to 57% better than second-best #### **Contrastive loss framework for MILP solving** - Predict-and-Search [ICML 2024] - Backdoors for branching priority in BnB [ECAI 2024] # A contrastive-loss framework for ML-guided MILP solving Identify a decision to improve in the search algorithm Define positive and negative samples of the decisions: design algorithms to compute them #### **Data collection:** Run the search. Compute positive and negative samples and record corresponding features #### **Contrastive loss:** Learn a model to make discriminative predictions Deploy: ML-guided Search - Positive = Good decisions (similar to imitation learning) - Negative = Bad decisions Imitate positive samples (similar to imitation learning) But also pull the prediction away from negative samples ### Predict-and-Search #### Given a binary MILP 1. Select a subset of variables and fix them to 0 2. Select a subset of variables and fix them to 1 - 3. Solve for the unfixed variables (a reduced-size MILP) - When solving, allow changing $\Delta \ge 0$ previously-fixed variables (aka trust region) # Predict-and-Search with Imitation Learning [Han et al., ICLR 2023] #### Imitation Learning: - Use optimal and near-optimal solutions as the expert demonstration - Predict each variable as 0 or 1 - Use a binary classification loss The smaller the objective of solution j, the higher the weight in the loss (assuming minimization problems) Learn from the data of all feasible solutions discovered during BnB (not necessary the optimal ones) # Predict-and-Search with Contrastive Learning Our work Use contrastive loss to make better variable assignment predictions ### ConPaS: Contrastive Predict-and-Search [Taoan Huang et al. ICML 2024] Contrastive Predict-and-Search for Mixed Integer Linear Programs # Positive and Negative Samples #### **Positive Samples** - Optimal solutions - Near-optimal solutions #### **Negative Samples** - (Inf) Infeasible solutions that are similar to optimal ones - Obtained by random perturbation - (LQ) Low-quality solutions that are similar to optimal ones - Obtained by solving a novel minimax optimization problem ### Results #### **Baselines** - SCIP: Branch and Bound using SCIP solver - **ND**: Neural Diving [Nair et al., 2021] - PaS: GNN-based Predictand-Search [Han et el., 2023] VS. - ConPaS-Inf (ours) - ConPaS-LQ (ours) ### Results: Generalization Primal Integral is 58% - 70% lower than the best baseline PaS ## Outline #### **Contrastive loss for LNS-MIP** [ICML 2023] #### Contrastive loss framework for MILP solving - Predict-and-Search [ICML 2024] - Novel strategy for effective negative samples - 19%-76% lower primal integral than second best in distribution - 58-70% lower primal integral than second best when generalizing to larger - Backdoors for branching priority in BnB [ECAI 2024] ## Backdoors **Backdoor** = a set of key decision variables such that searching over them is enough to solve the problem • first introduced in the context of SAT [Williams et al, 2003] #### **Strong backdoors for MIP** - Subset of decision variables ${\mathcal B}$ - Branching on only this subset yields optimal solution - generalized to MIP [Dilkina et al, 2009] #### **Goal: Predict pseudo-backdoors** - Learn to predict a set of key decision variables - such that prioritizing branching on these variables will lead to improving solving time ### Previous Work: Backdoors #### SAT/CSP: first introduced, with empirical limitations - Williams et al. IJCAI 2003 - Paris et al. ICTAI 2006 - Kottler et al. SAT 2008 #### **MIP Sampling backdoors** - Dilkina et al. CPAIOR 2009 - Fiscetti et al. IPCO 2011 - Dvořák et al. IJCAI 2017 - Khalil et al. AAAI 2022 Overall: core sets of variables potentially exist + they can be used for fast MIP solving **Learning Pseudo-Backdoors for Mixed Integer Programs**. Aaron Ferber, Jialin Song, Bistra Dilkina, Yisong Yue. CPAIOR 2022 - First ML approach to Backdoor prediction - Sample backdoor candidates and Rank - Set branching priority based on highest- ranked backdoor candidate [with reject option] [Junyang Cai et al. ECAI 2024] Learning Backdoors for Mixed Integer Programs with Contrastive Learning ### Training data collection (for each MIP) - 1. Collect candidate backdoors using MCTS [Khalil et al., AAAI2022] - 2. Select the top **k** candidate backdoors S with the highest tree weight - 3. Solve MIP with each backdoor to obtain BnB runtime - Positive samples $S_p = \mathbf{p}$ shortest-runtime backdoors in S - Negative samples $S_n = q$ longest-runtime backdoors in S ## <u>Deploy</u>: use ML model to guide solver on unseen MIPs Performance: ~15% improvement over Gurobi on 6 problem domains CL model gives speed-ups on hardest instances in each distribution (b) SC-L **Contrastive loss** machine learning ## Contrastive Loss for ML-guided MIP # Can we do something more synergistic? #### Mixing algorithmic tasks [Junyang Cai et al, CPAIOR 2025] Multi-task Representation Learning for Mixed Integer Linear Programming Success of ML-guided MIP solving for: - LNS - Predict-and-Search - BnB Branching - Parameter configuration - BnB Primal Heuristics - BnB Cut selection BUT each time we start from scratch with data collection and training Step 1: Training network architecture with multiple fixed output layers for each task Step 2: Fine-tune only the task-specific layers #### Multi-task Representation Learning Step 1: Training network architecture with multiple fixed output layers for each task Step 2: Fine-tune only the task-specific layers ## Train (Backdoors, PaS) – Test (Backdoors) - Better performance In distribution - Even better performance when generalization on size #### Generalization to new tasks - Single task: train and test on same task - Multi-task: Train on 2 tasks, fine-tune and test on a new task - Performance on larger instance size then trained/finetuned ## ML-guided linear MIP via contrastive loss learning improve decisionmaking strategies in different search algorithms for MILP. ## Key challenge: benchmarks and datasets #### Datasets for ML-guided MILP solving Weimin Huang et al, ArXiv 2025] Distributional MIPLIB: a Multi-Domain Library for Advancing ML-Guided MILP Methods #### **Dataset Limitations in Existing Work:** - Heterogenous (e.g, MIPLIB) - Not ideal for ML methods - MILPs distributions but independently generated with different parameters for the same domains - Hard to benchmark - A small set of synthetic problem domains repeatedly used - Lack of evaluation on real-world problems Need for standardized train and test sets across hardness levels Need for a richer set of problem domains Distributional MIPLIB: a Multi-Domain Library for Advancing ML-Guided MILP Methods ## 8 Synthetic domains curated from existing work 1. CA: Combinatorial Auctions 2. SC: Set Covering **3. MIS**: Maximum Independent Set 4. MVC: Minimum Vertex Cover **5. GISP**: Generalized Independent Set Problem, a graph problem in forestry management **6. CFLP**: Capacitated Facility Location Problem **7. LB**: Load Balancing deals with apportioning workloads across workers **8. IP**: Item Placement involves spreading items across containers to utilize them evenly | | Hardness
Level | Dist. Source:
ML4MILPs | Instance Statistics | | | | | Perform | ance Metric | :s | |-------------------|---|--|---|------------------|------------------|--|-----------------------|--|------------------------------------|---| | Domain | | | # Var B | # Var I | # Var C | # Constr | # Opt | Opt
Time(s) | NonOpt
Gap | Primal-dual
Integral | | | | | | Synt | thetic | | | | | | | CA [†] | Easy
Medium
Very hard | Gasse et al. (2019)
Gasse et al. (2019)
Huang et al. (2023) | 1000
1500
4000 | 0
0
0 | 0
0
0 | 385.04
578.07
2676.32 | 100
100
0 | 47.14
358.14
N/A | N/A
N/A
0.10 | 2.30
7.29
400.28 | | SC [†] | Easy
Medium
Hard
Very hard | Gasse et al. (2019)
Gasse et al. (2019)
Gasse et al. (2019)
Huang et al. (2023) | 1000
1000
1000
4000 | 0
0
0
0 | 0
0
0
0 | 500
1000
2000
5000 | 100
100
56
0 | 18.05
214.11
1603.66
N/A | N/A
N/A
0.04
0.20 | 0.99
15.78
180.25
847.11 | | MIS [†] | Easy
Medium
Very hard | Gasse et al. (2019)
Gasse et al. (2019)
Huang et al. (2023) | 1000
1500
6000 | 0
0
0 | 0
0
0 | 3946.25
5941.14
23994.82 | 100
88
0 | 50.52
470.44
N/A | N/A
0.01
0.30 | 0.86
11.28
1132.69 | | MVC [†] | Easy
Medium
Hard
Very hard | New
New
New
Huang et al. (2023) | 1200
2000
500
1000 | 0
0
0
0 | 0
0
0
0 | 5975
9975
30100
65100 | 100
97
55
0 | 27.26
244.11
1821.04
N/A | N/A
0.01
0.02
0.12 | 0.27
2.28
102.74
454.02 | | GISP [†] | Easy
Medium
Hard
Very hard
Ext hard | New
Ferber et al. (2022)
Ferber et al. (2022)
Cai et al. (2024)
Khalil et al. (2017) | 605.81
988.81
1317.03
6017
12675.83 | 0
0
0
0 | 0
0
0
0 | 1967.05
3353.03
4567.83
7821.87
16515.44 | 100
100
85
0 | 43.09
671.89
2623.16
N/A
N/A | N/A
N/A
0.08
0.44
2.01 | 15.59
204.83
866.16
2104.04
8139.33 | | CFLP [†] | Easy
Medium | Gasse et al. (2019)
Gasse et al. (2019) | 100
200 | 0
0 | 10000
20000 | 10201
20301 | 100
100 | 44.44
103.51 | N/A
N/A | 0.57
0.88 | | LB † | Hard | Gasse et al. (2022) | 1000 | 0 | 60000 | 64307.17 | 9 | 2665.11 | 0.00 | 33.48 | | IP † | Very hard | Gasse et al. (2022) | 1050 | 0 | 33 | 195 | 0 | N/A | 0.44 | 1770.42 | | | 100 |) test instances | Hardno | cc. norf | orm on co | of Guro | hi @ 1 | hour ti | mo cuto | tt | 100 test instances, Hardness: performance of Gurobi @ 1 hour time cutoff + 900 train/val + generators **Curated from existing work in ML-guided MILP solving:** **Maritime Inventory Routing Problem (MIRP)** **Neural Network Verification (NNV)** **New in ML-guided MILP solving:** Energy Network Optimal Transmission Switching (OTS) Middle-Mile Consolidation Network (MMCN) Seismic-Resilient Pipe Network Planning (SRPN) [Pollack et al. (2024)] [Greening et al. (2023)] [Huang et al. (2020)] | Domain | Hardness
Level | Dist. Source:
ML4MILPs | Instance Statistics | | | Performance Metrics | | | | | |---------------|----------------------|---------------------------|---------------------|----------|----------|---------------------|-------|----------------|---------------|-------------------------| | | | | # Var B | # Var I | # Var C | # Constr | # Opt | Opt
Time(s) | NonOpt
Gap | Primal-dual
Integral | | | Real-world | | | | | | | | | | | MIRP | Medium | Gasse et al. (2022) | 0 | 15080.57 | 19576.15 | 44429.70 | 10‡ | 697.24 | 0.23 | 728.75 | | NNV | Easy | Nair et al. (2020) | 171.49 | 0 | 6972.60 | 6533.70 | 588‡ | 37.98 | N/A | 21.81 | | | Easy | New | 4181 | 0 | 17137 | 48582 | 100 | 45.86 | N/A | 3.72 | | OTS^\dagger | Medium | New | 7525 | 0 | 33202 | 92992 | 100 | 419.55 | N/A | 25.80 | | | Hard | New | 6546 | 0 | 46423 | 111804 | 52 | 2564.00 | 0.20 | 1926.19 | | | Medium ^{BI} | New | 1156.94 | 263.23 | 0 | 437.81 | 100 | 114.93 | N/A | 3.01 | | | $Medium^{BC}$ | New | 4271.59 | 0 | 324.04 | 3171.23 | 100 | 468.17 | N/A | 37.30 | | MMCN | $Hard^{BI}$ | New | 2074.76 | 346.39 | 0 | 642.57 | 34 | 1998.57 | 0.01 | 79.79 | | | $Very\ hard^{BI}$ | New | 21596.72 | 1127.29 | 0.00 | 3944.01 | 0 | N/A | 0.10 | 369.15 | | | Very hard BC | New | 68345.21 | 0 | 2425.87 | 96272.60 | 0 | N/A | 0.61 | 2761.52 | | SRPN | Easy | New | 3016.42 | 0 | 3016.42 | 5917.27 | 21‡ | 77.91 | 0.02 | 10.00 | | JNFN | Hard | New | 11485.33 | 0 | 11485.33 | 22430.84 | 9‡ | 1321.43 | 0.03 | 134.12 | ## Sample efficiency: ML-policies with mixed distributions USC - Collecting expert samples from a large number of instances is expensive - Alternative training strategy: pool data and train ML models on mixed distributions 80 training instances per domain ML-single: trained on a single domain (homogeneous) **ML-mix5**: trained on a mix of instances from 5 domains | Domain | Р | Improv of ML-mix5 | | | | |-------------|------------------|---------------------------|---------------------------------------|----------------|--| | Domain | SCIP | ML-single | ML-mix5 | over ML-single | | | MIS (Easy) | 4.412 ± 0.118 | 5.408 ± 5.309 | $\textbf{2.781}\ \pm\ \textbf{0.197}$ | 48.58% | | | GISP (Easy) | 12.509 ± 0.242 | $11.299\pm\textbf{0.885}$ | $\textbf{10.823}\pm\textbf{0.383}$ | 4.21% | | | CFLP (Easy) | 0.644 ± 0.021 | 0.642 ± 0.036 | $\textbf{0.638}\ \pm\ \textbf{0.020}$ | 0.62% | | | CA (Med) | 2.347 ± 0.034 | $1.927\pm\textbf{0.063}$ | $\boldsymbol{1.815}\ \pm\ 0.015$ | 5.81% | | | SC (Med) | 6.465 ± 0.023 | 5.602 ± 0.156 | $\textbf{5.362}\pm\textbf{0.131}$ | 4.28% | | Models trained with pooled data exhibit better performance when limited training data is available ### Mixed distributions & generalization More data (320 training instances per domain) -> Single domain training is better in-distribution | Domain | P | Improv. ML-mix5 | | | | |-------------|-------------------|-----------------------------------|-------------------|----------------|--| | Domain | SCIP | SCIP ML-single | | over ML-single | | | MIS (Easy) | 4.412 ± 0.118 | $\textbf{2.434}\pm\textbf{0.074}$ | 2.545 ± 0.107 | -4.56% | | | GISP (Easy) | 12.509 ± 0.242 | 10.700 ± 0.442 | 10.420 ± 0.279 | 2.62% | | | CFLP (Easy) | 0.644 ± 0.021 | $\textbf{0.606}\pm 0.028$ | 0.610 ± 0.021 | -0.66% | | | CA (Med) | 2.347 ± 0.034 | $\textbf{1.775}\pm0.056$ | 1.795 ± 0.199 | -1.13% | | | SC (Med) | 6.465 ± 0.023 | 4.965 ± 0.095 | 4.796 ± 0.104 | 3.40% | | #### **Transfer ML-single and ML-mix 5 to HARDER distributions** Models trained with pooled data exhibits better generalization to harder instances #### Large Neighborhood Search (LNS-MIP) via contrastive loss The first use of contrastive loss in ML-guided MIP solving #### Contrastive loss as a unifying paradigm for ML-guided MIP Significant gains over other approaches in PaS and Backdoors #### Multi-task Learning for ML-guided MIP solving - superior generalization performance on problem size and unseen tasks - First step to Foundational model for ML-guided MIP solving #### **Benchmarking: Distributional MIPLIB** - First standardized **benchmarks** + **real-world** domains - Highlights outstanding research challenges such as GNN inference overhead - Demonstrate value of cross-domain ML training for sample efficiency and generalization ### Papers - 1. [ICML 2023] Huang, Taoan; Ferber, Aaron; Tian, Yuandong; Dilkina, Bistra; Steiner, Benoit; "Searching Large Neighborhoods for Integer Linear Programs with Contrastive Learning" - 2. [ICML 2024] Taoan Huang, Aaron M Ferber, Arman Zharmagambetov, Yuandong Tian, Bistra Dilkina. "Contrastive **Predict-and-Search** for Mixed Integer Linear Programs" - 3. [ECAI 2024] J Cai, T Huang, B Dilkina. "Learning **Backdoors** for Mixed Integer Linear Programs with Contrastive Learning" - 4. [CPAIOR 2025] J Cai, T Huang, B Dilkina. "Multi-task Representation Learning for Mixed Integer Linear Programming" - 5. [Arxiv] Weimin Huang, T. Huang, A. Ferber, A. and B Dilkina. **Distributional MIPLIB**: a Multi-Domain Library for Advancing ML-Guided MILP Methods. AAAI-2025 Combining AI and OR/MS for Better Trustworthy Decision Making Bridge Program. arXiv preprint arXiv:2406.06954. ### **Optimization** - Exciting and growing research area - Design discrete optimization algorithms with learning components - Learning methods that incorporate the combinatorial decision making they inform Thank you!