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Integer ProgrammingGraph Optimization
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Add a constraint:
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at X at time step 1
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Mixed Integer Linear Programs (MIP)

Flexible mathematical program framework

   𝑥 𝑐𝑇𝑥  bj    v 
    𝐴𝑥 ≤ 𝑏            

𝑥𝑗 ∈ ℤ ∀𝑗 ∈ ℐ           y

Image sources: https://www.r-bloggers.com/2010/11/any-r-packages-to-solve-vehicle-
routing-problem/
[https://youtu.be/8gy5tYVR-28]
https://www.cnbc.com/2022/10/16/how-the-uber-lyft-gig-economy-battle-over-drivers-
ends .html
https://itsvinayak.hashnode.dev/all-about-knapsack-problem-or-python
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Scalable solving methods key to many real-world applications:
• Branch-and-bound (SCIP, Gurobi, CPLEX)
• Large Neighborhood Search 
• Etc. 
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Distributional MIP Solving
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Learn from:

Solve

Day 1 Day 2 Day T… Day T + Δ

Repeated solving of similar problems in many real-world settings
Learn search policies tailored to the MIP distribution

- get better performance than generic one-fits-all approaches by fitting to specific problem structure

- no need for hand-designed custom approaches to new / challenging domains



Landscape: ML for MIP solving

ML at the top-level: algorithm configuration / solver ensembling

• SMAC, HydraMIP, AutoML, many more

ML to improve tree search (BnB) for MIP:

• select variables to branch on (Khalil et al., 2016; Gasse et al., 2019; Gupta et al., 2020; Zarpellon et al., 2021, 
Ferber et al, 2022, Scavuzo etl al 2024, Lin et al 2024, Cai et al 2024) 

• select nodes to expand (He et al., 2014; Labassi et al., 2022). 

• select primal heuristics (Khalil et al., 2017; Chmiela et al., 2021, others) 

• select cutting planes (Tang et al., 2020; Paulus et al., 2022; Huang et al., 2022c, Li et al,  others)

ML for Incomplete / Heuristic Search for MIP

• Large Neighborhood Search / LNS (Song et al, Wu et al, Sonnerat et al, Liu et al,  Huang et al 2023)

• Solution Prediction and Predict-and-Search: (Ding et al, Nair et al,  Khalil et al, Han et al, Huang et al 2024)

ML for other Combinatorial Optimization Problems: 

• SAT, TSP, VRP, SMT,  Multi-agent Path Finding, other Graph Opt



Outline

1) Large Neighborhood Search (LNS-MIP) via contrastive loss

2) Contrastive loss as a unifying paradigm for ML-guided MIP

• Predict-and-Search with contrastive loss

• Branching priorities in B&B (Backdoor prediction) with contrastive loss

3) Multi-task Learning for ML-guided MIP solving

4) Benchmarking: Distributional MIPLIB

7



Large Neighborhood Search (LNS)

Initialize

Destroy

1. Find an initial feasible solution

Repair

2. Select a part of the solution and 
unassign those variables

3. Reoptimize the removed part while 
keeping the remaining part fixed

9



Large Neighborhood Search (LNS)

Initialize

Destroy

1. Find an initial feasible solution

Repair

2. Select a part of the solution and 
unassign those variables

3. Reoptimize the removed part while 
keeping the remaining part fixed

Require heuristic
designs
& Opportunities for
ML guidance
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Local Branching (LB) Heuristic [Fischetti & Lodi, 2003]

Destroy step: Given an ILP and the current best solutions 𝑥∗, 
                      choose at most 𝑘 variables to reoptimize while fixing the rest

How do we find the optimal subset of k variables? 

Local Branching: solve a ILP with 𝑛 variables and 𝑚 + 1 constraints

Variable 𝑖 is selected 
for LNS if changed 
value from x*

෍

𝑖:𝑥𝑖
∗=0

𝑥𝑖 + ෍

𝑖:𝑥𝑖
∗=1

(1 − 𝑥𝑖) ≤ 𝑘

   𝑥 𝑐𝑇𝑥   bj    v 
    𝐴𝑥 ≤ 𝑏             

𝑥𝑖 ∈ {0,1} ∀𝑖            y

[Fischetti & Lodi, 2003] Local Branching. Mathematical programming.



LB Heuristic [Fischetti & Lodi, 2003]

• Solve the Local Branching ILP

• In hindsight, variables whose values change are the optimal subset

•  But very expensive to solve computationally

12

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

1 1 1 0 0

1 0 0 1 0

0 1 1 1 0

Current best solution

LB solution

Difference

Allow to change 𝑘  3



IL-LNS: Imitation Learning Approach

Learning to imitate Local Branching [Sonnerat et al., 2021]

- Data collection: run Local Branching ILP exhaustively to find one great example (label) of 

the variable destroy set for each ‘state’ (problem, c rrent complete sol tion)

- Training: Imitate Local Branching by classifying the variables (destroy or not)

- Testing: Sample neighborhoods based on the predicted scores of each variable

[Sonnerat et al., 2021] Learning a large neighborhood search algorithm for mixed integer programs. Arxiv.



Contrastive Loss
Instead of learning only from the best samples provided by local branching…

We also learn to distinguish between good and bad samples with contrastive 
loss

                  

Posi ve Pair

 ega ve Pair

https://towardsdatascience.com/understanding-contrastive-learning-d5b19fd96607
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Recent use of contrastive learning in other settings:
Contrastive learning of visual representations (Hjelm et al., 2019; He et al., 2020; Chen et al., 2020) 
and graph representations (You et al., 2020; Tong et al., 2021)
[Mulamba et al., 2021] Contrastive losses and solution caching for predict-and-optimize. IJCAI 2021.
[Duan et al., 2022] Augment with care: Contrastive learning for combinatorial problems. ICML 2022



Our Approach: CL-LNS

ILP instances for training

Find an initial
solution

1

0

1

0

0

0

1

1

Solve the Local
Branching ILP

For each
instance

Negative examples:
- Take the optimal solution
- Randomly perturb it to
get negative samples

Add to
dataset

Update the current
solution with the
optimal
neighborhood

Supervised contrastive
learning to predict
good neighborhoods

Positive examples:
Optimal and sub-optimal
neighborhoods obtained
from Local Branching

1

0

0

1

0

1

0

1

Collect training data

[Taoan Huang et al., ICML 2023] Searching Large Neighborhoods for Integer Linear Programs with Contrastive Learning 

Training and data collection pipeline



Contrastive loss - Data collection details

Optimal sample := variables changed in the optimal solution found by

       local branching ILP solved by SCIP within 1 hours

best_improve:= improvement of the optimal sample over incumbent objective value

Positive samples of destroy sets: 

- All solutions [0/1 vector] found by local branching ILP with improvement >= 0.5 * best_improve

- up to max of 10 solutions



Optimal sample := variables changed in the optimal solution found by

       local branching solved by SCIP within 1 hours

best_improve:= improvement of the optimal sample over incumbent objective value

Negative samples of destroy sets (k * Num Positive Samples, k=9): 

- Randomly replace 5% of variables in the optimal sample, Solve LNS MIP-subproblem with SCIP 
- Record it as a negative sample if improvement <= 0.05 * best_improve
- If not enough negative samples found, increase to 10% to 20%, 30%...100%

Contrastive loss - Data collection details



CL-LNS: Training with a Contrastive Loss

Contrastive Loss function
(InfoNCE):
optimizes the negative log 
probability of the final
embedding being similar to the
positive samples

Positive Samples

Negative samples
Neural Network Output

a (destroy set): each positive/negative sample is a binary 0/1 vector of length n variables
𝒙 is a set of features of the MIP to be solved and the current search state
𝝅 𝒙 : NN output is a continuous [0,1] vector of length n variables: suggested destroy set

[Huang et al., ICML 2023] Searching Large Neighborhoods for Integer Linear Programs with Contrastive Learning. 



CL-LNS: Features [Khalil et al., 2016] [Gasse et al., 2019]

Variable features (V): 

 - Objective coefficient c
 - The number of constraints in which it appears
 …
 - Features of the most recent best-found solutions

Edge features (E):

 - Coefficient values A

Constraint features (C): 

 - Right-hand side b

 - The number of non-zero coefficients

 - Average coefficient values

 …
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[Gasse et al., 2019] Exact Combinatorial Optimization with Graph Convolutional Neural Networks . NeurIPS
[Khalil et al., 2016] learning to branch in mixed integer programming. AAAI

    𝒄𝑻𝒙      𝑨𝒙  𝒃, 
𝑥𝐼          

𝑨𝒊,𝒋 ≠ 0𝒙𝒊 𝒄𝒋

𝒙𝟏

𝒄𝟏

..

..

..

𝒄𝒎

..

..

𝒙𝒏

𝑐1
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Variable

s
Constraints



CL-LNS: Neural Network Architecture 
(permutation invariant model)

The final output is
a score in [0,1]
indicating how
promising it is to
select each
variable.

Graph Attention
Network

                                

Neural
Network
Output

Bipartite
Graph and
Features
x=(V,E,C)

Input
features

Constraint side
message passing

Variable side
message passing

Embedding
layers

Final embedding +
Sigmoid = [0,1]n



CL-LNS: Testing

An ILP instance

Find an initial
solution

1

0

1

0

0

0

1

1

1

0

0

1

0

1

0

1

Reoptimize

Use the ML model to 
predict the set of variables 
to destroy

LNS iterations

Compute 
features

Output the
solution

Test Time: Greedily choose the k variables with 
max scores from the ML model output 𝜋 𝒙  
as destroy set for LNS move and reoptimize sub-MIP



Problem Domains

MVC: Weighted Minimum Vertex Cover
 “Small” instance: 1,000 variables and 65,100 constraints
 

CA: Combinatorial Auctions

 “Small” instance: 4,000 variables and 2,675 constraints
 

• Small instance: Training (1024) and testing (100)

• Large instance: Testing only (100 instances)

• 2x variables and ~2x constraints
Results on two more
domains (MIS, SC) in our
paper



Baselines

- BnB: Branch and Bound using SCIP solver

- RANDOM: LNS with random neighborhood selection 

- LB-RELAX: LNS with local branching relaxation heuristics [Huang et al., CPAIOR2023]

- IL-LNS: SOTA imitation learning approach [Sonnerat et al., 2021]

- RL-LNS: SOTA reinforcement learning approach [Wu et al., 2021]

vs.

- CL-LNS (ours)

[Huang et al., 2023] Local Branching Relaxation Heuristics for Integer Linear Programs. CPAIOR
[Sonnerat et al., 2021] Learning a large neighborhood search algorithm for mixed integer programs. Arxiv.
[Wu et al., 2021] Learning large neighborhood search policy for integer programming. NeurIPS



Results: Primal Gap over Time

Min Vertex Cover-Small Min Vertex Cover-Large

Primal Gap:
How far away the 
solution is from the 
best known one

Combinatorial Auctions-Small

n=1,000   m=65,100 n=4,000    m= 2,675



Results: Primal Integral

Min Vertex Cover-Small Combinatorial Auctions-Small

The primal integral at 

time q is the integral 

on [0, q] of the primal

gap as a function of 

runtime. 

Captures the quality of 

and the speed at which 

solutions are found.

60 minutes - Small instances



Min Vertex Cover-Large Combinatorial Auctions-Large

60 minutes - Large instances

The primal integral at 

time q is the integral 

on [0, q] of the primal

gap as a function of 

runtime. 

Captures the quality of 

and the speed at which 

solutions are found.

Results: Primal Integral (Generalization)



Outline

Contrastive learning for LNS-MIP

• gives 26% - 69% better rate of improvement (primal integral)  
than the second-best approach (primal integral at 60 minutes) 
among non-ML, Imitation Learning and RL SOTA approaches

• strong generalization to larger instances: up to 57% better than 
second-best 

Contrastive loss framework for MILP solving

• Predict-and-Search [ICML 2024] 

• Backdoors for branching priority in BnB [ECAI 2024]



A contrastive-loss framework 
for ML-guided MILP solving

Identify a
decision to
improve in
the search
algorithm

Define positive
and negative
samples of the
decisions: design
algorithms to
compute them

Data collection:
Run the search.
Compute positive
and negative
samples and record 
corresponding 
features

Contrastive loss:
Learn a model
to make
discriminative
predictions

Deploy:
ML-guided
Search

- Positive = Good decisions (similar to imitation learning)
- Negative = Bad decisions

Imitate positive samples (similar to imitation learning)
But also pull the prediction away from negative samples



Predict-and-Search

Given a binary MILP

1. Select a subset of variables and fix them to 0

2. Select a subset of variables and fix them to 1

3. Solve for the unfixed variables (a reduced-size MILP)
- When solving, allow changing Δ ≥ 0 previously-fixed variables (aka trust region)

29



Predict-and-Search with Imitation Learning
[Han et al., ICLR 2023]

Learn from the data of all feasible solutions discovered during BnB

(not necessary the optimal ones)

The smaller the objective of solution j, 
the higher the weight in the loss

(assuming minimization problems)

Imitation Learning:
- Use optimal and near-optimal solutions as the expert

demonstration
- Predict each variable as 0 or 1
- Use a binary classification loss



Predict-and-Search with Contrastive Learning

Use contrastive loss to 
make better variable 
assignment predictions

Our work

Predicted 
Values



ConPaS: Contrastive Predict-and-Search

MILP instances for training

For each
instance

Negative samples:
Obtain infeasible or low-
quality solutions that are 
similar to each positive 
sample.

Positive samples:
Solve the instance to 
obtain optimal and near-
optimal solutions.

Collect training data

Supervised
contrastive learning

Dataset

Contrastive learning-guided 
Predict-and-Search

Testing

[Taoan Huang et al. ICML 2024] Contrastive Predict-and-Search for Mixed Integer Linear Programs



Positive and Negative Samples

33

Positive Samples

• Optimal solutions

• Near-optimal solutions

Negative Samples

• (Inf) Infeasible solutions that are similar to optimal ones
• Obtained by random perturbation

• (LQ) Low-quality solutions that are similar to optimal ones
• Obtained by solving a novel minimax optimization problem



Results

Baselines

- SCIP: Branch and Bound 
using SCIP solver

- ND: Neural Diving [Nair et al.,
2021]

- PaS: GNN-based Predict-
and-Search [Han et el., 2023]

vs.

- ConPaS-Inf (ours)
- ConPaS-LQ (ours)



Results: Generalization

Min Vertex Cover-Large

Combinatorial Auctions-Large

Primal Integral is 58% - 70% lower than the best baseline PaS



Outline

Contrastive loss for LNS-MIP [ICML 2023]

Contrastive loss framework for MILP solving

• Predict-and-Search [ICML 2024] 
• Novel strategy for effective negative samples

• 19%-76% lower primal integral than second best in distribution

• 58-70% lower primal integral than second best when generalizing to larger

• Backdoors for branching priority in BnB [ECAI 2024]



Backdoors

Backdoor = a set of key decision variables such that 
searching over them is enough to solve the problem 
• first introduced in the context of SAT [Williams et al, 2003] 

Strong backdoors for MIP
• Subset of decision variables ℬ

• Branching on only this subset yields optimal solution

• generalized to MIP [Dilkina et al, 2009]

Goal: Predict pseudo-backdoors
• Learn to predict a set of key decision variables 

• such that prioritizing branching on these variables will lead to 
improving solving time



Previous Work: Backdoors

SAT/CSP: first introduced, with empirical limitations
- Williams et al. IJCAI 2003
- Paris et al. ICTAI 2006
- Kottler et al. SAT 2008

MIP Sampling backdoors
- Dilkina et al. CPAIOR 2009
- Fiscetti et al. IPCO 2011
- Dvořák et al. IJCAI 2017
- Khalil et al. AAAI 2022

Overall: core sets of variables potentially exist
 + they can be used for fast MIP solving

Learning Pseudo-Backdoors for Mixed Integer 
Programs.  Aaron Ferber, Jialin Song, Bistra Dilkina, 
Yisong Yue. CPAIOR 2022

- First ML approach to Backdoor prediction
- Sample backdoor candidates and Rank
- Set branching priority based on highest- ranked 

backdoor candidate [with reject option]

LP Relaxation

MIP

Pseudo-Backdoor 
samples
ℬ
ℬ
…
ℬ

SCORER: Scoring module
(GAT + Attention Pooling)

CLS: Classification module
Solve with ℬ∗ or gurobi?
(GAT + Attention Pooling)

ℬ∗

ℬ∗ or 
Gurobi?

Solve with 
Gurobi

using ℬ∗

Solve with
Gurobi

Score



CL-MIP-Backdoor Pipeline

Collect 
backdoors

[Junyang Cai et al. ECAI 2024] Learning Backdoors for Mixed Integer Programs with Contrastive Learning



Training data collection (for each MIP)

1. Collect candidate backdoors using MCTS [Khalil et al., AAAI2022]

2. Select the top k candidate backdoors S with the highest tree weight 

3. Solve MIP with each backdoor to obtain BnB runtime 

• Positive samples Sp = p shortest-runtime backdoors in S

• Negative samples Sn = q longest-runtime backdoors in S



Deploy: use ML model to guide solver 
              on unseen MIPs

Performance: ~15% improvement over Gurobi on 6 problem domains
CL model gives speed-ups on hardest instances in each distribution

Binary+cont.



Contrastive Loss for ML-guided MIP

44

MILPPredict-and-
Search

Branch-and-
Bound

Contrastive
learning

Large
Neighborhood
Search

Contrastive loss 

machine learning

framework to improve 

decision-making 
strategies in different

search algorithms for 
MILP.Destroy Variable 

Set Selection
26-69% better 
Primal integral

Partial Variable
Assignment

Up to 75% better 
Primal Integral

Branching Priorities 9%-27% faster 
runtime to optimum

Improved
Decision-Making

ResultsAlgorithms



Can we do something more 
synergistic?



Multi-Task Learning

Success of ML-guided MIP 
solving for:
- LNS
- Predict-and-Search
- BnB Branching
- Parameter configuration
- BnB Primal Heuristics
- BnB Cut selection

BUT each time we start from 
scratch with data collection 
and training

Mixing algorithmic tasks 
[Junyang Cai et al, CPAIOR 2025] Multi-task Representation Learning for Mixed Integer Linear Programming



Multi-task Representation Learning

Graph Attention Network

Contrastive loss

<-Backdoor
Predict-and-Search->
<-Configuration



Train (Backdoors, PaS) – Test (Backdoors)
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● Better performance 
In distribution

● Even better 
performance when 
generalization on size

+3.6%

+5.4%

+6.5%

+4.3%

+5.7%

+1.5%



Generalization to new tasks

• Single task: train and test on same task

• Multi-task: Train on 2 tasks, fine-tune and test on a new task

• Performance on larger instance size then trained/finetuned

Predict-and-Search + Gurobi Configuration + SCIP Backdoor + Gurobi

SC
IP

  



ML-guided linear MIP via contrastive loss learning
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Predict-and-
Search

Branch-and-
Bound

Contrastive
learning

Large
Neighborhood
Search

improve decision-

making strategies in 

different search 
algorithms for MILP.

Destroy Variable 
Set Selection

26-69% better Primal 
integral than 2nd best

Partial Variable
Assignment

Up to 75% better Primal 
Integral than 2nd best

Branching Priorities 9%-27% faster 
Runtime to opt

Improved
Decision-Making

ResultsAlgorithms

 CML’23

 CML’24

ECA ’24

Multi-task 
Partial Var Assignment
Branching Priorities
Solver Configuration

7-88% better 
than BnB 

CPA OR’25

   𝑥 𝑐𝑇𝑥  bj    v 
    𝐴𝑥 ≤ 𝑏            

𝑥𝑗 ∈ ℤ ∀𝑗 ∈ ℐ           y



Key challenge: 
benchmarks and datasets



Datasets for ML-guided MILP solving

○ Heterogenous (e.g, MIPLIB)
■ Not ideal for ML methods

○ A small set of synthetic problem domains repeatedly used
■ Lack of evaluation on real-world problems

○ MILPs distributions but independently generated
with different parameters for the same domains 
■ Hard to benchmark 

Dataset Limitations in Existing Work:
Distributional MIPLIB: 
a Multi-Domain Library 

for Advancing 
ML-Guided MILP Methods

Weimin Huang et al, ArXiv 2025] 
Distributional MIPLIB: a Multi-Domain Library  for Advancing ML-Guided MILP Methods

Need for standardized train and test sets across hardness levels
Need for a richer set of problem domains



8 Synthetic domains curated from existing work

100 test instances, Hardness: performance of Gurobi @ 1 hour time cutoff
+ 900 train/val + generators

1. CA: Combinatorial Auctions 

2. SC: Set Covering 

3. MIS: Maximum Independent Set

4. MVC: Minimum Vertex Cover

5. GISP: Generalized Independent 

Set Problem, a graph problem in 

forestry management 

6. CFLP: Capacitated Facility 

Location Problem

7. LB: Load Balancing deals with 

apportioning workloads across 

workers

8. IP: Item Placement involves 

spreading items across 

containers to utilize them evenly 



5 Real-world domains from critical applications
Curated from existing work in ML-guided MILP solving:

Maritime Inventory Routing Problem (MIRP) 
Neural Network Verification (NNV)

New in ML-guided MILP solving:
Energy Network Optimal Transmission Switching (OTS) [Pollack et al. (2024)]
Middle-Mile Consolidation Network (MMCN) [Greening et al. (2023)]
Seismic-Resilient Pipe Network Planning (SRPN)                [Huang et al. (2020)]



● Collecting expert samples from a large number of instances is expensive
● Alternative training strategy: pool data and train ML models on mixed distributions

Sample efficiency: ML-policies with mixed distributions

Models trained with pooled data exhibit 
better performance when limited training data is available

80 training instances per 
domain

ML-single: trained on a 
single domain 
(homogeneous)

ML-mix5: trained on a mix 
of instances from 5 
domains



Mixed distributions & generalization

59

More data (320 training 
instances per domain)

-> Single domain training is 
better in-distribution

Trained on MIS (Easy)

Trained on SC (Medium)

Transfer ML-single and ML-mix 5 to HARDER distributions

Models trained with pooled data exhibits 
better generalization to harder instances 



Conclusion
Large Neighborhood Search (LNS-MIP) via contrastive loss

• The first use of contrastive loss in ML-guided MIP solving

Contrastive loss as a unifying paradigm for ML-guided MIP

• Significant gains over other approaches in PaS and Backdoors

Multi-task Learning for ML-guided MIP solving

• superior generalization performance on problem size and unseen tasks
• First step to Foundational model for ML-guided MIP solving

Benchmarking: Distributional MIPLIB

• First standardized benchmarks + real-world domains
• Highlights outstanding research challenges such as GNN inference overhead

• Demonstrate value of cross-domain ML training for sample efficiency and 
generalization



Papers

1. [ICML 2023] Huang, Taoan; Ferber, Aaron; Tian, Yuandong; Dilkina, Bistra; 
Steiner, Benoit; "Searching Large Neighborhoods for Integer Linear Programs 
with Contrastive Learning”

2. [ICML 2024] Taoan Huang, Aaron M Ferber, Arman Zharmagambetov, Yuandong 
Tian, Bistra Dilkina. “Contrastive Predict-and-Search for Mixed Integer Linear 
Programs”

3. [ECA  2024] J Cai, T H ang, B Dilkina. “Learning Backdoors for Mixed Integer 
Linear Programs with Contrastive Learning”

4. [CPA OR 2025] J Cai, T H ang, B Dilkina. “Multi-task Representation Learning 
for Mixed  nteger Linear Programming”

5. [Arxiv] Weimin Huang, T. Huang, A. Ferber, A. and B Dilkina. Distributional 
MIPLIB: a Multi-Domain Library for Advancing ML-Guided MILP Methods. AAAI-
2025 Combining AI and OR/MS for Better Trustworthy Decision Making – Bridge 
Program. arXiv preprint arXiv:2406.06954.



Thank you!

ML          Combinatorial 

Optimization 

‣ Exciting and growing research area

‣ Design discrete optimization algorithms 

with learning components

‣ Learning methods that incorporate the 

combinatorial decision making they inform
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