
ML-guided search for Mixed Integer Linear Programming

Bistra Dilkina
Associate Professor of Computer Science

Co-Director, USC Center on AI in Society (CAIS)

USC Site Lead, AI Institute for Optimization (AI4OPT)

University of Southern California

Aug 10, 2025
at SAT’25 and CP’25 workshop on “Machine Learning for Solvers and Provers (ML4SP)”

Problem Type

Integer ProgrammingGraph Optimization

Greedy Heuristic

Branching Heuristic Selection

Exact Solving for MILP

Infusing ML with Constrained Decision MakingInfusing Discrete Optimization
with Machine Learning

ClusterNET: Differentiable kmeans for
a class graph optimization problems

GCN node
embedding
s

K-means
clustering Locate 1 facility in

each community

Loss: quality of
facility
assignment

Differentiate
through K-means

Update GCN
params

Decision-focused learning for
submodular optimization and LP

Augment discrete optimization

algorithms with learning components

Learning methods that incorporate the

combinatorial decisions they inform

ML Combinatorial Optimization

‣ Exciting and growing research area

MAPF

TB Health Visits Allocation

MIPaaL: MIP as a layer in
Neural Networks

Predic ons Sol on

M P Solver

LP Relaxation

MIP

Pseudo-Backdoor
samples
ℬ
ℬ
…
ℬ

Scoring module
(GAT + Attention Pooling)

Classification module
Solve with ℬ∗ or gurobi?
(GAT + Attention Pooling)

ℬ∗

ℬ∗ or
Gurobi?

Solve with
Gurobi

using ℬ∗

Solve with
Gurobi

Score

Backdoors

LNS for MIP

Initialize

Destroy

Repair

10

1

2

1

2

High-level Constraint Tree

1

2

1

2

1

2

1

2

Add a constraint:
Agent 2 cannot be

at X at time step 1

Add a constraint:
Agent 1 cannot be

at X at time step 1

Conflict Selection in CBS

Node Selection in ECBS

LNS for MAPF

Wildlife Trafficking Routes
Features Predictions Solution

Edge
Accuracy

Shortest

Path

Logistic
Model

Objective

Distance
Arms Trafficking
Money Laundering

SurCO: MINLP solving using
Differentiable optimization

Mixed Integer Linear Programs (MIP)

Flexible mathematical program framework

 𝑥 𝑐𝑇𝑥 bj v
 𝐴𝑥 ≤ 𝑏

𝑥𝑗 ∈ ℤ ∀𝑗 ∈ ℐ y

Image sources: https://www.r-bloggers.com/2010/11/any-r-packages-to-solve-vehicle-
routing-problem/
[https://youtu.be/8gy5tYVR-28]
https://www.cnbc.com/2022/10/16/how-the-uber-lyft-gig-economy-battle-over-drivers-
ends .html
https://itsvinayak.hashnode.dev/all-about-knapsack-problem-or-python

4

Scalable solving methods key to many real-world applications:
• Branch-and-bound (SCIP, Gurobi, CPLEX)
• Large Neighborhood Search
• Etc.

https://www.r-bloggers.com/2010/11/any-r-packages-to-solve-vehicle-routing-problem/
https://www.r-bloggers.com/2010/11/any-r-packages-to-solve-vehicle-routing-problem/
https://www.r-bloggers.com/2010/11/any-r-packages-to-solve-vehicle-routing-problem/
https://www.r-bloggers.com/2010/11/any-r-packages-to-solve-vehicle-routing-problem/
https://www.r-bloggers.com/2010/11/any-r-packages-to-solve-vehicle-routing-problem/
https://www.r-bloggers.com/2010/11/any-r-packages-to-solve-vehicle-routing-problem/
https://www.r-bloggers.com/2010/11/any-r-packages-to-solve-vehicle-routing-problem/
https://www.r-bloggers.com/2010/11/any-r-packages-to-solve-vehicle-routing-problem/
https://www.r-bloggers.com/2010/11/any-r-packages-to-solve-vehicle-routing-problem/
https://www.r-bloggers.com/2010/11/any-r-packages-to-solve-vehicle-routing-problem/
https://www.r-bloggers.com/2010/11/any-r-packages-to-solve-vehicle-routing-problem/
https://www.r-bloggers.com/2010/11/any-r-packages-to-solve-vehicle-routing-problem/
https://www.r-bloggers.com/2010/11/any-r-packages-to-solve-vehicle-routing-problem/
https://www.r-bloggers.com/2010/11/any-r-packages-to-solve-vehicle-routing-problem/
https://www.r-bloggers.com/2010/11/any-r-packages-to-solve-vehicle-routing-problem/
https://www.r-bloggers.com/2010/11/any-r-packages-to-solve-vehicle-routing-problem/
https://www.r-bloggers.com/2010/11/any-r-packages-to-solve-vehicle-routing-problem/
https://www.cnbc.com/2022/10/16/how-the-uber-lyft-gig-economy-battle-over-drivers-ends.html
https://www.cnbc.com/2022/10/16/how-the-uber-lyft-gig-economy-battle-over-drivers-ends.html
https://www.cnbc.com/2022/10/16/how-the-uber-lyft-gig-economy-battle-over-drivers-ends.html
https://www.cnbc.com/2022/10/16/how-the-uber-lyft-gig-economy-battle-over-drivers-ends.html
https://www.cnbc.com/2022/10/16/how-the-uber-lyft-gig-economy-battle-over-drivers-ends.html
https://www.cnbc.com/2022/10/16/how-the-uber-lyft-gig-economy-battle-over-drivers-ends.html
https://www.cnbc.com/2022/10/16/how-the-uber-lyft-gig-economy-battle-over-drivers-ends.html
https://www.cnbc.com/2022/10/16/how-the-uber-lyft-gig-economy-battle-over-drivers-ends.html
https://www.cnbc.com/2022/10/16/how-the-uber-lyft-gig-economy-battle-over-drivers-ends.html
https://www.cnbc.com/2022/10/16/how-the-uber-lyft-gig-economy-battle-over-drivers-ends.html
https://www.cnbc.com/2022/10/16/how-the-uber-lyft-gig-economy-battle-over-drivers-ends.html
https://www.cnbc.com/2022/10/16/how-the-uber-lyft-gig-economy-battle-over-drivers-ends.html
https://www.cnbc.com/2022/10/16/how-the-uber-lyft-gig-economy-battle-over-drivers-ends.html
https://www.cnbc.com/2022/10/16/how-the-uber-lyft-gig-economy-battle-over-drivers-ends.html
https://www.cnbc.com/2022/10/16/how-the-uber-lyft-gig-economy-battle-over-drivers-ends.html
https://www.cnbc.com/2022/10/16/how-the-uber-lyft-gig-economy-battle-over-drivers-ends.html
https://www.cnbc.com/2022/10/16/how-the-uber-lyft-gig-economy-battle-over-drivers-ends.html
https://www.cnbc.com/2022/10/16/how-the-uber-lyft-gig-economy-battle-over-drivers-ends.html
https://www.cnbc.com/2022/10/16/how-the-uber-lyft-gig-economy-battle-over-drivers-ends.html

Distributional MIP Solving

5

Learn from:

Solve

Day 1 Day 2 Day T… Day T + Δ

Repeated solving of similar problems in many real-world settings
Learn search policies tailored to the MIP distribution

- get better performance than generic one-fits-all approaches by fitting to specific problem structure

- no need for hand-designed custom approaches to new / challenging domains

Landscape: ML for MIP solving

ML at the top-level: algorithm configuration / solver ensembling

• SMAC, HydraMIP, AutoML, many more

ML to improve tree search (BnB) for MIP:

• select variables to branch on (Khalil et al., 2016; Gasse et al., 2019; Gupta et al., 2020; Zarpellon et al., 2021,
Ferber et al, 2022, Scavuzo etl al 2024, Lin et al 2024, Cai et al 2024)

• select nodes to expand (He et al., 2014; Labassi et al., 2022).

• select primal heuristics (Khalil et al., 2017; Chmiela et al., 2021, others)

• select cutting planes (Tang et al., 2020; Paulus et al., 2022; Huang et al., 2022c, Li et al, others)

ML for Incomplete / Heuristic Search for MIP

• Large Neighborhood Search / LNS (Song et al, Wu et al, Sonnerat et al, Liu et al, Huang et al 2023)

• Solution Prediction and Predict-and-Search: (Ding et al, Nair et al, Khalil et al, Han et al, Huang et al 2024)

ML for other Combinatorial Optimization Problems:

• SAT, TSP, VRP, SMT, Multi-agent Path Finding, other Graph Opt

Outline

1) Large Neighborhood Search (LNS-MIP) via contrastive loss

2) Contrastive loss as a unifying paradigm for ML-guided MIP

• Predict-and-Search with contrastive loss

• Branching priorities in B&B (Backdoor prediction) with contrastive loss

3) Multi-task Learning for ML-guided MIP solving

4) Benchmarking: Distributional MIPLIB

7

Large Neighborhood Search (LNS)

Initialize

Destroy

1. Find an initial feasible solution

Repair

2. Select a part of the solution and
unassign those variables

3. Reoptimize the removed part while
keeping the remaining part fixed

9

Large Neighborhood Search (LNS)

Initialize

Destroy

1. Find an initial feasible solution

Repair

2. Select a part of the solution and
unassign those variables

3. Reoptimize the removed part while
keeping the remaining part fixed

Require heuristic
designs
& Opportunities for
ML guidance

10

Local Branching (LB) Heuristic [Fischetti & Lodi, 2003]

Destroy step: Given an ILP and the current best solutions 𝑥∗,
 choose at most 𝑘 variables to reoptimize while fixing the rest

How do we find the optimal subset of k variables?

Local Branching: solve a ILP with 𝑛 variables and 𝑚 + 1 constraints

Variable 𝑖 is selected
for LNS if changed
value from x*

෍

𝑖:𝑥𝑖
∗=0

𝑥𝑖 + ෍

𝑖:𝑥𝑖
∗=1

(1 − 𝑥𝑖) ≤ 𝑘

 𝑥 𝑐𝑇𝑥 bj v
 𝐴𝑥 ≤ 𝑏

𝑥𝑖 ∈ {0,1} ∀𝑖 y

[Fischetti & Lodi, 2003] Local Branching. Mathematical programming.

LB Heuristic [Fischetti & Lodi, 2003]

• Solve the Local Branching ILP

• In hindsight, variables whose values change are the optimal subset

•  But very expensive to solve computationally

12

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

1 1 1 0 0

1 0 0 1 0

0 1 1 1 0

Current best solution

LB solution

Difference

Allow to change 𝑘 3

IL-LNS: Imitation Learning Approach

Learning to imitate Local Branching [Sonnerat et al., 2021]

- Data collection: run Local Branching ILP exhaustively to find one great example (label) of

the variable destroy set for each ‘state’ (problem, c rrent complete sol tion)

- Training: Imitate Local Branching by classifying the variables (destroy or not)

- Testing: Sample neighborhoods based on the predicted scores of each variable

[Sonnerat et al., 2021] Learning a large neighborhood search algorithm for mixed integer programs. Arxiv.

Contrastive Loss
Instead of learning only from the best samples provided by local branching…

We also learn to distinguish between good and bad samples with contrastive
loss

Posi ve Pair

 ega ve Pair

https://towardsdatascience.com/understanding-contrastive-learning-d5b19fd96607

14

Recent use of contrastive learning in other settings:
Contrastive learning of visual representations (Hjelm et al., 2019; He et al., 2020; Chen et al., 2020)
and graph representations (You et al., 2020; Tong et al., 2021)
[Mulamba et al., 2021] Contrastive losses and solution caching for predict-and-optimize. IJCAI 2021.
[Duan et al., 2022] Augment with care: Contrastive learning for combinatorial problems. ICML 2022

Our Approach: CL-LNS

ILP instances for training

Find an initial
solution

1

0

1

0

0

0

1

1

Solve the Local
Branching ILP

For each
instance

Negative examples:
- Take the optimal solution
- Randomly perturb it to
get negative samples

Add to
dataset

Update the current
solution with the
optimal
neighborhood

Supervised contrastive
learning to predict
good neighborhoods

Positive examples:
Optimal and sub-optimal
neighborhoods obtained
from Local Branching

1

0

0

1

0

1

0

1

Collect training data

[Taoan Huang et al., ICML 2023] Searching Large Neighborhoods for Integer Linear Programs with Contrastive Learning

Training and data collection pipeline

Contrastive loss - Data collection details

Optimal sample := variables changed in the optimal solution found by

 local branching ILP solved by SCIP within 1 hours

best_improve:= improvement of the optimal sample over incumbent objective value

Positive samples of destroy sets:

- All solutions [0/1 vector] found by local branching ILP with improvement >= 0.5 * best_improve

- up to max of 10 solutions

Optimal sample := variables changed in the optimal solution found by

 local branching solved by SCIP within 1 hours

best_improve:= improvement of the optimal sample over incumbent objective value

Negative samples of destroy sets (k * Num Positive Samples, k=9):

- Randomly replace 5% of variables in the optimal sample, Solve LNS MIP-subproblem with SCIP
- Record it as a negative sample if improvement <= 0.05 * best_improve
- If not enough negative samples found, increase to 10% to 20%, 30%...100%

Contrastive loss - Data collection details

CL-LNS: Training with a Contrastive Loss

Contrastive Loss function
(InfoNCE):
optimizes the negative log
probability of the final
embedding being similar to the
positive samples

Positive Samples

Negative samples
Neural Network Output

a (destroy set): each positive/negative sample is a binary 0/1 vector of length n variables
𝒙 is a set of features of the MIP to be solved and the current search state
𝝅 𝒙 : NN output is a continuous [0,1] vector of length n variables: suggested destroy set

[Huang et al., ICML 2023] Searching Large Neighborhoods for Integer Linear Programs with Contrastive Learning.

CL-LNS: Features [Khalil et al., 2016] [Gasse et al., 2019]

Variable features (V):

 - Objective coefficient c
 - The number of constraints in which it appears
 …
 - Features of the most recent best-found solutions

Edge features (E):

 - Coefficient values A

Constraint features (C):

 - Right-hand side b

 - The number of non-zero coefficients

 - Average coefficient values

 …

19

[Gasse et al., 2019] Exact Combinatorial Optimization with Graph Convolutional Neural Networks . NeurIPS
[Khalil et al., 2016] learning to branch in mixed integer programming. AAAI

 𝒄𝑻𝒙 𝑨𝒙 𝒃,
𝑥𝐼

𝑨𝒊,𝒋 ≠ 0𝒙𝒊 𝒄𝒋

𝒙𝟏

𝒄𝟏

..

..

..

𝒄𝒎

..

..

𝒙𝒏

𝑐1

𝑐𝑛

𝑏1

𝑏𝑚

Variable

s
Constraints

CL-LNS: Neural Network Architecture
(permutation invariant model)

The final output is
a score in [0,1]
indicating how
promising it is to
select each
variable.

Graph Attention
Network

Neural
Network
Output

Bipartite
Graph and
Features
x=(V,E,C)

Input
features

Constraint side
message passing

Variable side
message passing

Embedding
layers

Final embedding +
Sigmoid = [0,1]n

CL-LNS: Testing

An ILP instance

Find an initial
solution

1

0

1

0

0

0

1

1

1

0

0

1

0

1

0

1

Reoptimize

Use the ML model to
predict the set of variables
to destroy

LNS iterations

Compute
features

Output the
solution

Test Time: Greedily choose the k variables with
max scores from the ML model output 𝜋 𝒙
as destroy set for LNS move and reoptimize sub-MIP

Problem Domains

MVC: Weighted Minimum Vertex Cover
 “Small” instance: 1,000 variables and 65,100 constraints

CA: Combinatorial Auctions

 “Small” instance: 4,000 variables and 2,675 constraints

• Small instance: Training (1024) and testing (100)

• Large instance: Testing only (100 instances)

• 2x variables and ~2x constraints
Results on two more
domains (MIS, SC) in our
paper

Baselines

- BnB: Branch and Bound using SCIP solver

- RANDOM: LNS with random neighborhood selection

- LB-RELAX: LNS with local branching relaxation heuristics [Huang et al., CPAIOR2023]

- IL-LNS: SOTA imitation learning approach [Sonnerat et al., 2021]

- RL-LNS: SOTA reinforcement learning approach [Wu et al., 2021]

vs.

- CL-LNS (ours)

[Huang et al., 2023] Local Branching Relaxation Heuristics for Integer Linear Programs. CPAIOR
[Sonnerat et al., 2021] Learning a large neighborhood search algorithm for mixed integer programs. Arxiv.
[Wu et al., 2021] Learning large neighborhood search policy for integer programming. NeurIPS

Results: Primal Gap over Time

Min Vertex Cover-Small Min Vertex Cover-Large

Primal Gap:
How far away the
solution is from the
best known one

Combinatorial Auctions-Small

n=1,000 m=65,100 n=4,000 m= 2,675

Results: Primal Integral

Min Vertex Cover-Small Combinatorial Auctions-Small

The primal integral at

time q is the integral

on [0, q] of the primal

gap as a function of

runtime.

Captures the quality of

and the speed at which

solutions are found.

60 minutes - Small instances

Min Vertex Cover-Large Combinatorial Auctions-Large

60 minutes - Large instances

The primal integral at

time q is the integral

on [0, q] of the primal

gap as a function of

runtime.

Captures the quality of

and the speed at which

solutions are found.

Results: Primal Integral (Generalization)

Outline

Contrastive learning for LNS-MIP

• gives 26% - 69% better rate of improvement (primal integral)
than the second-best approach (primal integral at 60 minutes)
among non-ML, Imitation Learning and RL SOTA approaches

• strong generalization to larger instances: up to 57% better than
second-best

Contrastive loss framework for MILP solving

• Predict-and-Search [ICML 2024]

• Backdoors for branching priority in BnB [ECAI 2024]

A contrastive-loss framework
for ML-guided MILP solving

Identify a
decision to
improve in
the search
algorithm

Define positive
and negative
samples of the
decisions: design
algorithms to
compute them

Data collection:
Run the search.
Compute positive
and negative
samples and record
corresponding
features

Contrastive loss:
Learn a model
to make
discriminative
predictions

Deploy:
ML-guided
Search

- Positive = Good decisions (similar to imitation learning)
- Negative = Bad decisions

Imitate positive samples (similar to imitation learning)
But also pull the prediction away from negative samples

Predict-and-Search

Given a binary MILP

1. Select a subset of variables and fix them to 0

2. Select a subset of variables and fix them to 1

3. Solve for the unfixed variables (a reduced-size MILP)
- When solving, allow changing Δ ≥ 0 previously-fixed variables (aka trust region)

29

Predict-and-Search with Imitation Learning
[Han et al., ICLR 2023]

Learn from the data of all feasible solutions discovered during BnB

(not necessary the optimal ones)

The smaller the objective of solution j,
the higher the weight in the loss

(assuming minimization problems)

Imitation Learning:
- Use optimal and near-optimal solutions as the expert

demonstration
- Predict each variable as 0 or 1
- Use a binary classification loss

Predict-and-Search with Contrastive Learning

Use contrastive loss to
make better variable
assignment predictions

Our work

Predicted
Values

ConPaS: Contrastive Predict-and-Search

MILP instances for training

For each
instance

Negative samples:
Obtain infeasible or low-
quality solutions that are
similar to each positive
sample.

Positive samples:
Solve the instance to
obtain optimal and near-
optimal solutions.

Collect training data

Supervised
contrastive learning

Dataset

Contrastive learning-guided
Predict-and-Search

Testing

[Taoan Huang et al. ICML 2024] Contrastive Predict-and-Search for Mixed Integer Linear Programs

Positive and Negative Samples

33

Positive Samples

• Optimal solutions

• Near-optimal solutions

Negative Samples

• (Inf) Infeasible solutions that are similar to optimal ones
• Obtained by random perturbation

• (LQ) Low-quality solutions that are similar to optimal ones
• Obtained by solving a novel minimax optimization problem

Results

Baselines

- SCIP: Branch and Bound
using SCIP solver

- ND: Neural Diving [Nair et al.,
2021]

- PaS: GNN-based Predict-
and-Search [Han et el., 2023]

vs.

- ConPaS-Inf (ours)
- ConPaS-LQ (ours)

Results: Generalization

Min Vertex Cover-Large

Combinatorial Auctions-Large

Primal Integral is 58% - 70% lower than the best baseline PaS

Outline

Contrastive loss for LNS-MIP [ICML 2023]

Contrastive loss framework for MILP solving

• Predict-and-Search [ICML 2024]
• Novel strategy for effective negative samples

• 19%-76% lower primal integral than second best in distribution

• 58-70% lower primal integral than second best when generalizing to larger

• Backdoors for branching priority in BnB [ECAI 2024]

Backdoors

Backdoor = a set of key decision variables such that
searching over them is enough to solve the problem
• first introduced in the context of SAT [Williams et al, 2003]

Strong backdoors for MIP
• Subset of decision variables ℬ

• Branching on only this subset yields optimal solution

• generalized to MIP [Dilkina et al, 2009]

Goal: Predict pseudo-backdoors
• Learn to predict a set of key decision variables

• such that prioritizing branching on these variables will lead to
improving solving time

Previous Work: Backdoors

SAT/CSP: first introduced, with empirical limitations
- Williams et al. IJCAI 2003
- Paris et al. ICTAI 2006
- Kottler et al. SAT 2008

MIP Sampling backdoors
- Dilkina et al. CPAIOR 2009
- Fiscetti et al. IPCO 2011
- Dvořák et al. IJCAI 2017
- Khalil et al. AAAI 2022

Overall: core sets of variables potentially exist
 + they can be used for fast MIP solving

Learning Pseudo-Backdoors for Mixed Integer
Programs. Aaron Ferber, Jialin Song, Bistra Dilkina,
Yisong Yue. CPAIOR 2022

- First ML approach to Backdoor prediction
- Sample backdoor candidates and Rank
- Set branching priority based on highest- ranked

backdoor candidate [with reject option]

LP Relaxation

MIP

Pseudo-Backdoor
samples
ℬ
ℬ
…
ℬ

SCORER: Scoring module
(GAT + Attention Pooling)

CLS: Classification module
Solve with ℬ∗ or gurobi?
(GAT + Attention Pooling)

ℬ∗

ℬ∗ or
Gurobi?

Solve with
Gurobi

using ℬ∗

Solve with
Gurobi

Score

CL-MIP-Backdoor Pipeline

Collect
backdoors

[Junyang Cai et al. ECAI 2024] Learning Backdoors for Mixed Integer Programs with Contrastive Learning

Training data collection (for each MIP)

1. Collect candidate backdoors using MCTS [Khalil et al., AAAI2022]

2. Select the top k candidate backdoors S with the highest tree weight

3. Solve MIP with each backdoor to obtain BnB runtime

• Positive samples Sp = p shortest-runtime backdoors in S

• Negative samples Sn = q longest-runtime backdoors in S

Deploy: use ML model to guide solver
 on unseen MIPs

Performance: ~15% improvement over Gurobi on 6 problem domains
CL model gives speed-ups on hardest instances in each distribution

Binary+cont.

Contrastive Loss for ML-guided MIP

44

MILPPredict-and-
Search

Branch-and-
Bound

Contrastive
learning

Large
Neighborhood
Search

Contrastive loss

machine learning

framework to improve

decision-making
strategies in different

search algorithms for
MILP.Destroy Variable

Set Selection
26-69% better
Primal integral

Partial Variable
Assignment

Up to 75% better
Primal Integral

Branching Priorities 9%-27% faster
runtime to optimum

Improved
Decision-Making

ResultsAlgorithms

Can we do something more
synergistic?

Multi-Task Learning

Success of ML-guided MIP
solving for:
- LNS
- Predict-and-Search
- BnB Branching
- Parameter configuration
- BnB Primal Heuristics
- BnB Cut selection

BUT each time we start from
scratch with data collection
and training

Mixing algorithmic tasks
[Junyang Cai et al, CPAIOR 2025] Multi-task Representation Learning for Mixed Integer Linear Programming

Multi-task Representation Learning

Graph Attention Network

Contrastive loss

<-Backdoor
Predict-and-Search->
<-Configuration

Train (Backdoors, PaS) – Test (Backdoors)

49

● Better performance
In distribution

● Even better
performance when
generalization on size

+3.6%

+5.4%

+6.5%

+4.3%

+5.7%

+1.5%

Generalization to new tasks

• Single task: train and test on same task

• Multi-task: Train on 2 tasks, fine-tune and test on a new task

• Performance on larger instance size then trained/finetuned

Predict-and-Search + Gurobi Configuration + SCIP Backdoor + Gurobi

SC
IP

ML-guided linear MIP via contrastive loss learning

51

Predict-and-
Search

Branch-and-
Bound

Contrastive
learning

Large
Neighborhood
Search

improve decision-

making strategies in

different search
algorithms for MILP.

Destroy Variable
Set Selection

26-69% better Primal
integral than 2nd best

Partial Variable
Assignment

Up to 75% better Primal
Integral than 2nd best

Branching Priorities 9%-27% faster
Runtime to opt

Improved
Decision-Making

ResultsAlgorithms

 CML’23

 CML’24

ECA ’24

Multi-task
Partial Var Assignment
Branching Priorities
Solver Configuration

7-88% better
than BnB

CPA OR’25

 𝑥 𝑐𝑇𝑥 bj v
 𝐴𝑥 ≤ 𝑏

𝑥𝑗 ∈ ℤ ∀𝑗 ∈ ℐ y

Key challenge:
benchmarks and datasets

Datasets for ML-guided MILP solving

○ Heterogenous (e.g, MIPLIB)
■ Not ideal for ML methods

○ A small set of synthetic problem domains repeatedly used
■ Lack of evaluation on real-world problems

○ MILPs distributions but independently generated
with different parameters for the same domains
■ Hard to benchmark

Dataset Limitations in Existing Work:
Distributional MIPLIB:
a Multi-Domain Library

for Advancing
ML-Guided MILP Methods

Weimin Huang et al, ArXiv 2025]
Distributional MIPLIB: a Multi-Domain Library for Advancing ML-Guided MILP Methods

Need for standardized train and test sets across hardness levels
Need for a richer set of problem domains

8 Synthetic domains curated from existing work

100 test instances, Hardness: performance of Gurobi @ 1 hour time cutoff
+ 900 train/val + generators

1. CA: Combinatorial Auctions

2. SC: Set Covering

3. MIS: Maximum Independent Set

4. MVC: Minimum Vertex Cover

5. GISP: Generalized Independent

Set Problem, a graph problem in

forestry management

6. CFLP: Capacitated Facility

Location Problem

7. LB: Load Balancing deals with

apportioning workloads across

workers

8. IP: Item Placement involves

spreading items across

containers to utilize them evenly

5 Real-world domains from critical applications
Curated from existing work in ML-guided MILP solving:

Maritime Inventory Routing Problem (MIRP)
Neural Network Verification (NNV)

New in ML-guided MILP solving:
Energy Network Optimal Transmission Switching (OTS) [Pollack et al. (2024)]
Middle-Mile Consolidation Network (MMCN) [Greening et al. (2023)]
Seismic-Resilient Pipe Network Planning (SRPN) [Huang et al. (2020)]

● Collecting expert samples from a large number of instances is expensive
● Alternative training strategy: pool data and train ML models on mixed distributions

Sample efficiency: ML-policies with mixed distributions

Models trained with pooled data exhibit
better performance when limited training data is available

80 training instances per
domain

ML-single: trained on a
single domain
(homogeneous)

ML-mix5: trained on a mix
of instances from 5
domains

Mixed distributions & generalization

59

More data (320 training
instances per domain)

-> Single domain training is
better in-distribution

Trained on MIS (Easy)

Trained on SC (Medium)

Transfer ML-single and ML-mix 5 to HARDER distributions

Models trained with pooled data exhibits
better generalization to harder instances

Conclusion
Large Neighborhood Search (LNS-MIP) via contrastive loss

• The first use of contrastive loss in ML-guided MIP solving

Contrastive loss as a unifying paradigm for ML-guided MIP

• Significant gains over other approaches in PaS and Backdoors

Multi-task Learning for ML-guided MIP solving

• superior generalization performance on problem size and unseen tasks
• First step to Foundational model for ML-guided MIP solving

Benchmarking: Distributional MIPLIB

• First standardized benchmarks + real-world domains
• Highlights outstanding research challenges such as GNN inference overhead

• Demonstrate value of cross-domain ML training for sample efficiency and
generalization

Papers

1. [ICML 2023] Huang, Taoan; Ferber, Aaron; Tian, Yuandong; Dilkina, Bistra;
Steiner, Benoit; "Searching Large Neighborhoods for Integer Linear Programs
with Contrastive Learning”

2. [ICML 2024] Taoan Huang, Aaron M Ferber, Arman Zharmagambetov, Yuandong
Tian, Bistra Dilkina. “Contrastive Predict-and-Search for Mixed Integer Linear
Programs”

3. [ECA 2024] J Cai, T H ang, B Dilkina. “Learning Backdoors for Mixed Integer
Linear Programs with Contrastive Learning”

4. [CPA OR 2025] J Cai, T H ang, B Dilkina. “Multi-task Representation Learning
for Mixed nteger Linear Programming”

5. [Arxiv] Weimin Huang, T. Huang, A. Ferber, A. and B Dilkina. Distributional
MIPLIB: a Multi-Domain Library for Advancing ML-Guided MILP Methods. AAAI-
2025 Combining AI and OR/MS for Better Trustworthy Decision Making – Bridge
Program. arXiv preprint arXiv:2406.06954.

Thank you!

ML Combinatorial

Optimization

‣ Exciting and growing research area

‣ Design discrete optimization algorithms

with learning components

‣ Learning methods that incorporate the

combinatorial decision making they inform

	Slide 1: ML-guided search for Mixed Integer Linear Programming
	Slide 2
	Slide 4: Mixed Integer Linear Programs (MIP)
	Slide 5: Distributional MIP Solving
	Slide 6: Landscape: ML for MIP solving
	Slide 7: Outline
	Slide 9: Large Neighborhood Search (LNS)
	Slide 10: Large Neighborhood Search (LNS)
	Slide 11: Local Branching (LB) Heuristic [Fischetti & Lodi, 2003]
	Slide 12: LB Heuristic [Fischetti & Lodi, 2003]
	Slide 13: IL-LNS: Imitation Learning Approach
	Slide 14: Contrastive Loss
	Slide 15: Our Approach: CL-LNS
	Slide 16: Contrastive loss - Data collection details
	Slide 17: Contrastive loss - Data collection details
	Slide 18: CL-LNS: Training with a Contrastive Loss
	Slide 19: CL-LNS: Features [Khalil et al., 2016] [Gasse et al., 2019]
	Slide 20: CL-LNS: Neural Network Architecture (permutation invariant model)
	Slide 21: CL-LNS: Testing
	Slide 22: Problem Domains
	Slide 23: Baselines
	Slide 24: Results: Primal Gap over Time
	Slide 25: Results: Primal Integral
	Slide 26: Results: Primal Integral (Generalization)
	Slide 27: Outline
	Slide 28: A contrastive-loss framework for ML-guided MILP solving
	Slide 29: Predict-and-Search
	Slide 30: Predict-and-Search with Imitation Learning [Han et al., ICLR 2023]
	Slide 31: Predict-and-Search with Contrastive Learning
	Slide 32: ConPaS: Contrastive Predict-and-Search
	Slide 33: Positive and Negative Samples
	Slide 34: Results
	Slide 35: Results: Generalization
	Slide 36: Outline
	Slide 37: Backdoors
	Slide 39: Previous Work: Backdoors
	Slide 40: CL-MIP-Backdoor Pipeline
	Slide 41: Training data collection (for each MIP)
	Slide 42: Deploy: use ML model to guide solver on unseen MIPs
	Slide 44: Contrastive Loss for ML-guided MIP
	Slide 46: Can we do something more synergistic?
	Slide 47: Mixing algorithmic tasks
	Slide 48: Multi-task Representation Learning
	Slide 49: Train (Backdoors, PaS) – Test (Backdoors)
	Slide 50: Generalization to new tasks
	Slide 51: ML-guided linear MIP via contrastive loss learning
	Slide 52: Key challenge: benchmarks and datasets
	Slide 54: Datasets for ML-guided MILP solving
	Slide 55: 8 Synthetic domains curated from existing work
	Slide 56: 5 Real-world domains from critical applications
	Slide 58: Sample efficiency: ML-policies with mixed distributions
	Slide 59: Mixed distributions & generalization
	Slide 60: Conclusion
	Slide 61: Papers
	Slide 63: Thank you!

