Automated Streamliner Selection

via Automated Algorithm Configuration and Selection

==

Patrick Spracklen Nguyen Dang Ozgiir Akgiin lan Miguel

X3 University of
St Andrews

Automated Algorithm Configuration and Selection

Automated Algorithm Configuration

Algorithm Parameters

Almost every algorithm has its own parameters that can be tuned!

Goal-bias RRT
35 1
f o
1‘» 12 30
‘# 10 25
e = @
® O
4t
l = 15
X @ =
10 A
“ 4l @ O

. - 0 lb 20 30 40 50
Deep Learning Evolutionary Algorithms .
#hidden layers, #hidden nodes mutation rate Al Planning
choices of heuristics in greedy best first search

activation function .
) crossover probability
learning rate
population size

Automated Algorithm Configuration

General-purpose techniques to configure algorithm parameters automatically

algorithm A with configuration space C

. . . a configuration ¢* € C such that
instanceset! ——— 3lgorithm configurator ——— > J

o1 N -
performance metric p f(c*) = mZiEI p(c, i) is optimised

Automated Algorithm Configuration

General-purpose techniques to solve the algorithm configuration problem automatically

algorithm A with configuration space C

instanceset/ ——» glgorithm configurator ——— ; o
performance metric p f(c*) = mZiE,p(c, i) is optimised

a configuration ¢* € C such that

Key components
o Local search algorithm: ParamILS (Hutter et al 2007, 2009)

O A black-box optimisation algorithm o Geneticalgorithm: GGA, GGA++ (Tierney et al 2009, Ansotegui at al 2015)
o Estimation of distribution algorithm:irace (Lopez-Ibdrez et al 2011, 2016)
o Bayesian optimization: SMAC, SMAC3 (Hutteret all 2011, Lindauer et al 2022)
o Golden section search algorithm: GPS (Pushak & Hoos, 2022)

Automated Algorithm Configuration

General-purpose techniques to solve the algorithm configuration problem automatically

algorithm A with configuration space C

instanceset/ ——» glgorithm configurator ——— ; o
performance metric p f(c*) = mZiE,p(c, i) is optimised

a configuration ¢* € C such that

Key components
o Local search algorithm: ParamlLS (Hutter et al 2007, 2009)

O A black-box optimisation algorithm o Geneticalgorithm: GGA, GGA++ (Tierney et al 2009, Ansotegui at al 2015)
o Estimation of distribution algorithm:irace (Lopez-Ibdrez et al 2011, 2016)
o Bayesian optimization: SMAC, SMAC3 (Hutteret all 2011, Lindauer et al 2022)
o Golden section search algorithm: GPS (Pushak & Hoos, 2022)

0 Special tricks to reduce the cost of evaluating each configuration on all instances

o racing
o adaptive capping (when performance metricis runtime)

racing |

irace: an automated algorithm configurator (Lépez-Ibarnez et al 2016)

Iteration 1

Parameter configurations

Instance 1 . . ‘
Instance 2 ‘ ‘ ‘

Statistical test

Iterated racing instance 3 » . . Statistical test
Instance 4 . x ‘
Statistical test
Instance 5 | J X X

Lopez-lbanez Dubois-Lacoste, Caceres, Birattari, Stltzle (2016)
The irace package: Iterated racing for automatic algorithm configuration. Operations Research Perspectives.

capping |

time limit of each run: 3600s

configuration ¢ configuration ¢’
p(c,i1) 2s
p(cl' il)
p(c.i) >
e 4s

p(c, i) Impose a capping of 1s when running ¢’on i,

Automated Algorithm Selection

Automated Algorithm Selection

» Inmany cases, there is often no single algorithm that performs best on all problem instances

» Automated Algorithm Selection

given a set of (complementary) algorithms, predict the best algorithm for a given problem instance

(based on instance features)

Automated Algorithm Selection

» Inmany cases, there is often no single algorithm that performs best on all problem instances

» Automated Algorithm Selection

given a set of (complementary) algorithms, predict the best algorithm for a given problem instance

(based on instance features)

> Effective automated algorithm selection recipe
O informative instance features
O arepresentative (and sufficiently large) training instance set

O suitable ML models (+ extra tricks)

Automated Algorithm Selection

SATzilla Nudelman, Devkar, Shoham, Leyton-Brown, Hoos (2004) “SATzilla: An Algorithm Portfolio for SAT”. SAT competition

Xu, Hutter, Hoos, Leyton-Brown (2008) “SATzilla: portfolio-based algorithm selection for SAT” JAIR
Xu, Hutter, Hoos, Leyton-Brown (2009) “SATzilla2009: an Automatic Algorithm Portfolio for SAT”. SAT competition

Xu, Hutter, Shen, Hoos, Leyton-Brown (2012)“SATzilla2012: Improved algorithm selection based on
cost-sensitive classification models” Proceedings of SAT Challenge.

» won several medals at SAT competitions 2007, 2009 & 2012

» informative SAT features:
o syntactic features
o probing features

» arepresentative (and sufficiently large) training instance set
o several thousands of instances from previous SAT competitions

» suitable ML models (+ extra tricks)
o empirical hardness models: regression models to predict algorithm performance

o cost-sensitive pairwise classification models with random forests

Automated Algorithm Selection

Nudelman, Devkar, Shoham, Leyton-Brown, Hoos (2004) “SATzilla: An Algorithm Portfolio for SAT”. SAT competition
Xu, Hutter, Hoos, Leyton-Brown (2008) “SATzilla: portfolio-based algorithm selection for SAT” JAIR
Xu, Hutter, Hoos, Leyton-Brown (2009) “SATzilla2009: an Automatic Algorithm Portfolio for SAT”. SAT competition
Xu, Hutter, Shen, Hoos, Leyton-Brown (2012)“SATzilla2012: Improved algorithm selection based on

cost-sensitive classification models” Proceedings of SAT Challenge.
» suitable ML models (+ extra tricks)
o trick: pre-solving (static) algorithm schedule (runtime scenarios)

* someinstances can be solved very quickly by a subset of algorithms
» feature extraction can be computationally expensive

total time limit: 100s

: A\ N\
a; | aq | as | feature extraction + predicting best algorithm & run it
N\ ~ J

time limit: 10s

Dang, Gent, Nightingale, Ulrich-Oltean, Waller. Constraint Models for Klondike. CP - Application track - Friday 9:30

Automated Algorithm Selection

» Automatically choose a suitable ML model and tricks:

Lindauer, Hoos, Hutter, Schaub (2015) “AutoFolio: An automatically configured algorithm selector” JAIR

https://github.com/automl/AutoFolio

Automated Algorithm Configuration
PCA for Algorithm Selection
standardisation/normalisation

data imputation

U Feature preprocessing methods

U Use pre-solving schedule?
percentage of time for pre-solving schedule

L Prediction model

clustering / regression / (cost-sensitive) pairwise classification
random forest / neural networks / XGBosst/ etc
hy per-parameter values for the chosen ML model.

https://github.com/automl/AutoFolio

Per-instance Automated Algorithm Configuration

Per-instance Algorithm Configuration

> Automated algorithm configuration

U given: a (large) algorithm configuration space, a set of problem instances
U objective: search for the best overall algorithm configuration on the given instance set

(in the hope that this configuration will also work well for unseen instances)

» Automated algorithm selection

U given: a set of (complementary) algorithms, a set of problem instances
U objective: predict the best algorithm for any given (unseen) instance

» Per-instance algorithm configuration

U given: a (large) algorithm configuration space, a set of problem instances

U objective: predict the best algorithm configuration for any given (unseen) instance

Per-instance Algorithm Configuration

> Per-instance algorithm configuration
U given: a (large) algorithm configuration space, a set of instances

U objective: predict the best algorithm configuration for any given (unseen) instance

Step 1: build a set of algorithm configurations with complementary strengths

Step 2: apply automated algorithm selection on that set

Per-instance Algorithm Configuration

> Per-instance algorithm configuration
U given: a (large) algorithm configuration space, a set of instances

U objective: predict the best algorithm configuration for any given (unseen) instance

Step 1: build a set of algorithm configurations with complementary strengths

Step 2: apply automated algorithm selection on that set

Per-instance Algorithm Configuration

» Step 1:the Hydra approach

O Xu, Hoos, Leyton-Brown (2010) Hydra: Automatically configuring algorithms for portfolio-based selection. AAAI
O given: a (large) algorithm configuration space, a set of problem instances

O objective: build a set of algorithm configurations with complementary strengths

. > algorithm configuration
instance set f [Algorithm configurator J—>

performance metricy —> €1

Per-instance Algorithm Configuration

» Step 1:the Hydra approach

O Xu, Hoos, Leyton-Brown (2010) Hydra: Automatically configuring algorithms for portfolio-based selection. AAAI
O given: a (large) algorithm configuration space, a set of problem instances

O objective: build a set of algorithm configurations with complementary strengths

. algorithm configuration
instance set f Algorithm configurator |[———>
performance metricp —— €1

-— algorithm configuration

instance set 1 [Algorithm configurator J—'
performance metricpy;, ——» @

p1(c, i) = best (p(c,i),p(cq,1))

(complementary tos €1)7)

Per-instance Algorithm Configuration

» Step 1:the Hydra approach

O Xu, Hoos, Leyton-Brown (2010) Hydra: Automatically configuring algorithms for portfolio-based selection. AAAI
O given: a (large) algorithm configuration space, a set of problem instances

O objective: build a set of algorithm configurations with complementary strengths

algorithm configuration
instanceset] — 9 9

[Algorithm configurator J—>
performance metricp;, ————» @

pl(CJ): best (p(C,),p(Cl,),p(Cz,))

(complementary to < ¢4); and “\Czﬂ)

Automated Streamliner Selection

via Automated Algorithm Configuration and Selection

Patrick Spracklen Nguyen Dang Ozgiir Akgiin lan Miguel

Automated Streamlining for Constrained Optimisation. CP 2019
Towards Portfolios of Streamlined Constraint Models: A Case Study with the Balanced Academic Curriculum Problem. ModRef 2020

Automated streamliner portfolios for constraint satisfaction problems. Artificial Intelligence Journal (2023)

Automated Streamliner Selection

Streamliners: uninferred constraints added to a constraint model to reduce the search space.

> first proposed in: Carla Gomes and Meinolf Sellmann (2004) Streamlined constraint reasoning. CP
> not guaranteed to be sound

» but if chosen correctly, can offer significant speedup in solving time

Automated Streamliner Selection

Problem specification
in Essence

streamliner generation
via Conjure

[Singleton streamliners]

MCTS + Hydra

[Portfolio of streamliners]

AutoFolio

Automated
streamliner selector

automated instance generation
via AutolG

[training instances]

Automated Streamliner Selection

Problem specification
in Essence

streamliner generation
via Conjure

[Singleton streamliners]

MCTS + Hydra

[Portfolio of streamliners]

AutoFolio

Automated
streamliner selector

automated instance generation
via AutolG

[training instances]

for constraint satisfaction problems

Automated Streamliner Selection

Problem specification
in Essence

streamliner generation
via Conjure

[Singleton streamliners]

Automated Streamliner Generation

Essence

Frisch, Harvey, Jefferson, Martinez-Hernandez, Miguel (2008)
Essence: A constraint language for specifying combinatorial problems. Constraints.

> an abstract constraint specification language

» supports several abstract types: set, multiset, function, partition, relation, ...
and arbitrary nesting of such types

Mon ABCD EFGH [JKL MNOP QRST

Social Golfers Problem: Tue AEIM BJOQ CHNT DGLS FKPR

In a golf club there are a number of golfers who
wish to play together in g groups of size s. Wed AGKO BIPT CFMS DHJR ELNQ

Find a schedule of play for w days such that no Thu AHLP BKNS CEOR DFIQ GJMT
pair of golfers play together more than once

Fri ARJN BLMR CGPQ DEKT HIOS

20 golfers, 5 groups, 5 days
Source: https//mathworld.wolfram.com/SocialGolferProblem.htm/

https://mathworld.wolfram.com/SocialGolferProblem.html

Automated Streamliner Generation

Essence

Frisch, Harvey, Jefferson, Martinez-Hernandez, Miguel (2008)
Essence: A constraint language for specifying combinatorial problems. Constraints.

> an abstract constraint specification language

» supports several abstract types: set, multiset, function, partition, relation, ...
and arbitrary nesting of such types

//I;nguage Essence 1.3

given w, g, s : int(1l..)

Social Golfers Problem:

In a golf club there are a number of golfers who letting Golfers be new type of size g * s

wish to play together in g groups of size s. find sched : set (size w) of _
partition (regular, numParts g, partSize s)

Find a schedule of play for w days such that no from Golfers

pair of golfers play together more than once such that

forAll gl, g2 : Golfers, gl < g2 .
(sum week in sched . tolInt (together({gl, g2}, week)))

-

Automated Streamliner Generation

Essence pipeline

/ Conjure / Akglin, Frisch, Gent, Jefferson, Miguel, Nightingale (2022
Conjure: Automatic generation of constraint models from problem specifications. AlJ

[Essence Prime]

/ Savile Row Nightingale, Akgtin, Gent, Jefferson, Miguel, Spracklen (2017)
Automatically improving constraint models in Savile Row. AlJ

CcP SAT SMT MIP
solver solver solver solver

Automated Streamliner Generation

Streamliner generation from an Essence specification

» We define a set of rules to generate streamliners from the types of the decision variables in an
Essence constraint model.

> First-order rules: constraints that directly reduce the domain of a decision variable

O integervariables:
= onlyallow odd/even values
* restrict domain to the lower/upper half

O function variables:
» enforce that the function is monotonically increasing/decreasing
= enforce that the function is commutative

O partition variables

» make it quasi-regular: size of each partition must be roughly equal

Automated Streamliner Generation

Streamliner generation from an Essence specification

» We define a set of rules to generate streamliners from the types of the decision variables in an
Essence constraint model.

» Higher-order rules: take another rule and apply it to a variable with nested domains

O examples:
» setofintegers:

o approximately half of the integers must be odd

= set of functions:
o atleast onefunction must be monotonically increasing

Automated Streamliner Generation

Streamliner generation from an Essence specification

» We define a set of rules to generate streamliners from the types of the decision variables in an
Essence constraint model.

» Higher-order rules: take another rule and apply it to a variable with nested domains

O examples:

» setofintegers:
o approximately half of the integers must be odd

* set of functions: —_— softness parameter

o atleast onefunction must be monotonically increasing

Automated Streamliner Generation

Streamliner generation from an Essence specification

> Given a problem written in Essence, we can generate a
large set of candidate streamliners

(from CSPLib)

timetabling $ Balanced Academic Curriculum Problem (BACP)
find curr : function (total) Course --> Period

combinatorial $ Balanced Incomplete Block Designs (BIBD)

design find bibd : relation of (Obj * Block)

testing $ Covering Array

find CA: matrix indexed by [int(1..k), int(1..b)] of int(1..g)

$ Equidistant Frequency Permutation Arrays (EFPA)
letting String be domain function (total) Index --> Character
find ¢ : set (size numCodeWords) of String

coding theory

$ Fixed Length Error Correcting Codes (FLECC)
letting String be domain function (total) Index --> Character
find ¢ : set (size numOfCodeWords) of String

telecommunication

network flow $ Transshipment
find amountWT : function (W, T) --> int(1..max(range(stock)))
find amountTC : function (T, C) --> int(1..max(range(demand))

scheduling $ Tail Assignment
find route : function (total) Plane --> function int(1..n_flights) -->
Flight
combinatorial $ Social Golfers
design find sched : set (size w) of

partition (regular, numParts g, partSize s) from Golfers

. $ Vessel Loading
transportation find west, east : function (total) Container --> X,
north, south: function (total) Container -->Y

Automated Streamliner Generation

Streamliner generation from an Essence specification

> Given a problem written in Essence, we can generate a
large set of candidate streamliners

Problem #Candidate
Streamliners

BACP 108

BIBD 200
CoveringArray 64

Car Sequencing 36

EFPA 312

FLECC 144
Transshipment 68

Tail Assignment 336

Social Golfers 260

Vessel Loading 208

Automated Streamliner Generation

Streamliner generation from an Essence specification

> Given a problem written in Essence, we can generate a
large set of candidate streamliners

» Streamliners can also be combined
Example:

U integervariables:

= onlyallow odd/even values
* restrict domain to the lower/upper half

- combination: must be odd with domain restricted to the lower half

Problem #Candidate
Streamliners

BACP 108

BIBD 200
CoveringArray 64

Car Sequencing 36

EFPA 312

FLECC 144
Transshipment 68

Tail Assignment 336

Social Golfers 260

Vessel Loading 208

Automated Streamliner Generation

Streamliner generation from an Essence specification

> Given a problem written in Essence, we can generate a
large set of candidate streamliners

» Streamliners can also be combined
Example:

U integervariables:

= onlyallow odd/even values
* restrict domain to the lower/upper half

- combination: must be odd with domain restricted to the lower half

Problem #Candidate
Streamliners

BACP 108

BIBD 200
CoveringArray 64

Car Sequencing 36

EFPA 312

FLECC 144
Transshipment 68

Tail Assignment 336

Social Golfers 260

Vessel Loading 208

given a problem instance, which streamliner (combination) should we use?

Automated Streamliner Selection

[Singleton streamliners]

MCTS + Hydra l

[Portfolio of streamliners]

Automated Streamliner Generation & Selection

Monte Carlo Tree Search (MCTS) to search in the streamliner combination space
> the search space forms a lattice.

> pruning: if a streamliner combination returns UNSAT, its supersets will also return UNSAT.

\(Umtmam]u\ed

Automated Streamliner Generation & Selection

Monte Carlo Tree Search (MCTS) to search in the streamliner combination space

> performance of a streamliner combination:
O applicability: percentage of training instances solved

O solving time reduction: average reduction in solving time across the solved instances

applicability

»
»

solving time reduction

Automated Streamliner Generation & Selection

Monte Carlo Tree Search (MCTS) to search in the streamliner combination space

> performance of a streamliner combination:
O applicability: percentage of training instances solved

O solving time reduction: average reduction in solving time across the solved instances

> Muti-objective MCTS:

Wang and Sebag (2013) Hypervolume indicator and dominance reward based multi-objective monte-carlo
tree search. Machine learning.

O returns a set of streamliner combinations in the Pareto front

Automated Streamliner Selection

[Portfolio of streamliners]

AutoFolio l

Automated
streamliner selector

Automated Streamliner Selection

Automated streamliner selection with AutoFolio

> fzn2feat as instance features

O Amadini, Gabbrielli, Mauro (2014) An enhanced features extractor for a portfolio of constraint solvers. SAC

Automated Streamliner Selection

automated instance generation
via AutolG

[] [training instances]

MCTS + Hydra

[)

AutoFolio

| |

Automated Streamliner Selection

automated instance generation
via AutolG

[] [training instances] + [testinstances]

MCTS + Hydra

[)

AutoFolio

| |

Automated Instance Generation

LEVERHULME
TRUST

iAo RPEE

Ozglr ~ Nguyen Joan lan Peter Andras Patrick Christopher
Akgiin Dang Espasa Miguel Nightingale Salamon Spracklen Stone

Instance generation via instance generators. CP'19
Discriminating instance generation from abstract specifications: A case study with CP and MIP. CPAIOR’20

A Framework for Generating Informative Benchmark Instances. CP'22

https://github.com/stacs-cp/AutoIG
https://github.com/stacs-cp/AutoIG
https://github.com/stacs-cp/AutoIG

Automated Instance Generation

https://github.com/stacs-cp/AutolG

AutolG: a constraint-based automated instance generation tool

» Instances satisfy certain validity constraints

» Instances with certain properties regarding solvability
U SAT, UNSAT, or both
J graded: at a certain level of difficulty for a solver

 discriminating: easy for one solver, difficult for another solver

https://github.com/stacs-cp/AutoIG
https://github.com/stacs-cp/AutoIG
https://github.com/stacs-cp/AutoIG

Automated Instance Generation

https://github.com/stacs-cp/AutolG

AutolG: a constraint-based automated instance generation tool
» Instances satisfy certain validity constraints
» Instances with certain properties regarding solvability

U SAT, UNSAT, or both

U graded: at a certain level of difficulty for a solver

U discriminating: easy for one solver, difficult for another solver

» AutolG supports generating instances in both Essence and MiniZinc

https://github.com/stacs-cp/AutoIG
https://github.com/stacs-cp/AutoIG
https://github.com/stacs-cp/AutoIG

Experiments

Training instances (generated by AutolG):

> SAT instances

» For MCTS:
U “easy”instances: solved within [10s, 300s]

> For AutoFolio:
U sameinstances asin MCTS

U plus a small number of “hard” instances: solved within [300s, 3600s]

Test instances (generated by AutolG):
> SAT instances
> “hard”: solved within [300s, 3600s]

Experiments

» 10 problems
» 2 solvers:

U Chuffed: by Chu, Stuckey, Schutt, Ehlers, Gange, and Francis
U Lingeling: by Armin Biere

Experiments

» A practical setting: the selected streamlined model is run alongside the unstreamlined one

[)

streamlined

unstreamlined

stop here if a solution is returned

o /

stop here if streamlined model returns UNSAT or not finished

Experiments

» A practical setting: the selected streamlined model is run alongside the unstreamlined one

[)

streamlined

unstreamlined

stop here if a solution is returned

o /

stop here if streamlined model returns UNSAT or not finished

> Performance metric:

runtime (unstreamlined) 1 < speedup < 2: gainin wall time butnot CPU time
runtime (streamlined) speedup > 2: gainin CPU time

speedup =

for each test instance, pick the best
streamliner in the portfolio

Solver ‘ Problem ‘ # Instances H Oracle | SBS H ApplicFirst | ReducFirst | Autofolio ‘
BACP 16 53.47 | 1.47 2.48 4.71 46.56
BIBD 59 2.25 1.13 1.15 1.04 1.71
CarSequencing 52 8.77 1.91 1.88 2.19 6.77
Chuffed CoveringArray 46 3.36 2.20 1.26 1.26 3.20
EFPA 121 4.86 1.02 1.93 1.79 2.53
FLECC 192 3.95 2.18 2.02 1.68 2.24
SocialGolfersProblem 19 2.53 1.28 1.00 1.00 2.53
TailAssignment 35 3.20 3.20 3.20 1.21 3.20
Transshipment 216 16.21 2.77 2.89 2.93 5.39
VesselLoading 322 4.72 1.64 1.21 1.02 2.12
BACP 15 5.92 2.20 2.20 1.88 4.91
BIBD 25 2.26 1.25 1.39 1.04 1.30
CarSequencing 69 3.32 1.06 1.34 1.19 2.95
Lingeling CoveringArray 34 16.65 | 2.19 1.63 1.63 10.81
EFPA 158 1.39 1.00 1.18 1.03 1.20
FLECC 166 5.89 1.62 1.79 1.42 3.39
SocialGolfersProblem 17 2.23 1.14 1.09 1.09 1.89
TailAssignment 36 2.97 2.95 2.95 1.18 2.95
Transshipment 68 12.42 | 3.59 3.55 3.60 5.25
VesselLoading 78 2.51 1.29 1.11 1.80 2.34

the best overall streamliner
from the portfolio

Solver ‘ Problem ‘ # Instances H| Oracle | 555 || ApplicFirst | ReducFirst | Autofolio ‘
BACP 16 53.47 | 1.47 2.48 4.71 46.56
BIBD 59 2.25 1.13 1.15 1.04 1.71
CarSequencing 52 8.77 1.91 1.88 2.19 6.77
Chuffed CoveringArray 46 3.36 2.20 1.26 1.26 3.20
EFPA 121 4.86 1.02 1.93 1.79 2.53
FLECC 192 3.95 2.18 2.02 1.68 2.24
SocialGolfersProblem 19 2.53 1.28 1.00 1.00 2.53
TailAssignment 35 3.20 3.20 3.20 1.21 3.20
Transshipment 216 16.21 2.77 2.89 2.93 5.39
VesselLoading 322 4.72 1.64 1.21 1.02 2.12
BACP 15 5.92 2.20 2.20 1.88 4.91
BIBD 25 2.26 1.25 1.39 1.04 1.30
CarSequencing 69 3.32 1.06 1.34 1.19 2.95
Lingeling CoveringArray 34 16.65 | 2.19 1.63 1.63 10.81
EFPA 158 1.39 1.00 1.18 1.03 1.20
FLECC 166 5.89 1.62 1.79 1.42 3.39
SocialGolfersProblem 17 2.23 1.14 1.09 1.09 1.89
TailAssignment 36 2.97 2.95 2.95 1.18 2.95
Transshipment 68 12.42 | 3.59 3.55 3.60 5.25
VesselLoading 78 2.51 1.29 1.11 1.80 2.34

streamliners (from the portfolio) selected and applied sequentially
based on their applicability / solving time reduction

Solver ‘ Problem ‘ # Instances H| Oracle | SBS ‘ Applickirst | ReducFirst | Autofolio ‘
BACP 16 53.47 | 1.47 2.48 4.71 46.56
BIBD 59 2.25 1.13 1.15 1.04 1.71
CarSequencing 52 8.77 1.91 1.88 2.19 6.77
Chuffed CoveringArray 46 3.36 2.20 1.26 1.26 3.20
EFPA 121 4.86 1.02 1.93 1.79 2.53
FLECC 192 3.95 2.18 2.02 1.68 2.24
SocialGolfersProblem 19 2.53 1.28 1.00 1.00 2.53
TailAssignment 35 3.20 3.20 3.20 1.21 3.20
Transshipment 216 16.21 2.77 2.89 2.93 5.39
VesselLoading 322 4.72 1.64 1.21 1.02 2.12
BACP 15 5.92 2.20 2.20 1.88 4.91
BIBD 25 2.26 1.25 1.39 1.04 1.30
CarSequencing 69 3.32 1.06 1.34 1.19 2.95
Lingeling CoveringArray 34 16.65 | 2.19 1.63 1.63 10.81
EFPA 158 1.39 1.00 1.18 1.03 1.20
FLECC 166 5.89 1.62 1.79 1.42 3.39
SocialGolfersProblem 17 2.23 1.14 1.09 1.09 1.89
TailAssignment 36 2.97 2.95 2.95 1.18 2.95
Transshipment 68 12.42 | 3.59 3.55 3.60 5.25
VesselLoading 78 2.51 1.29 1.11 1.80 2.34

automated
algorithm selection

Solver Problem ‘ # Instances || Oracle | SBS H ApplicFirst | ReducFirst | Autofolio |
BACP 16 53.47 | 1.47 2.48 4.71 46.56
BIBD 59 2.25 1.13 1.15 1.04 1.71
CarSequencing 52 8.77 1.91 1.88 2.19 6.77
Chuffed CoveringArray 46 3.36 2.20 1.26 1.26 3.20
EFPA 121 4.86 1.02 1.93 1.79 2.53
FLECC 192 3.95 2.18 2.02 1.68 2.24
SocialGolfersProblem 19 2.53 1.28 1.00 1.00 2.53
TailAssignment 35 3.20 3.20 3.20 1.21 3.20
Transshipment 216 16.21 2.77 2.89 2.93 5.39
VesselLoading 322 4.72 1.64 1.21 1.02 2.12
BACP 15 5.92 2.20 2.20 1.88 4.91
BIBD 25 2.26 1.25 1.39 1.04 1.30
CarSequencing 69 3.32 1.06 1.34 1.19 2.95
Lingeling CoveringArray 34 16.65 | 2.19 1.63 1.63 10.81
EFPA 158 1.39 1.00 1.18 1.03 1.20
FLECC 166 5.89 1.62 1.79 1.42 3.39
SocialGolfersProblem 17 2.23 1.14 1.09 1.09 1.89
TailAssignment 36 2.97 2.95 2.95 1.18 2.95
Transshipment 68 12.42 | 3.59 3.55 3.60 5.25
VesselLoading 78 2.51 1.29 1.11 1.80 2.34

Summary

> It works, in most cases ©

But there’s definitely room for improvement

What's next?

More fine-grained streamliner generation (softness parameters)

More cost-effective streamliner search for improved generalisation

U racing & adaptive capping

More informative and cost-effective instance features

U Pellegrino, Akgiin, Dang, Kiziltan, and Miguel. Transformer-based Feature Learning for Algorithm Selection
in Combinatorial Optimisation. CP B (JMS 745) — Tuesday 12:00

What's next?

» Leveraging context information during the streamliner generation process

0 Using no-goods to identify promising streamliners
Yazicilar, Akgun, and Miguel (2024) Automated nogood-filtered fine-grained streamlining: a case study on covering arrays.

O LLMsinstead of rule-based streamliner generation
Voboril, Ramaswamy, and Szeider (2024) Generating streamlining constraints with large language models.

» Learning across similar problems

What's next?

» Automated streamliners for optimisation problems

O Voboril, Ramaswamy, and Szeider.“Balancing Latin Rectangles with LLM-generated Streamliners”
CP 2025 Application track - Tuesday 14:30 - JMS 745

O Spracklen, Dang, Akgiin, and Miguel. “Automatic streamlining for constrained optimisation”. CP 2019

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77

